Skip to main content

Advertisement

Log in

Quantum-inspired meta-heuristic approaches for a constrained portfolio optimization problem

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Portfolio optimization has long been a challenging proposition and a widely studied topic in finance and management. It involves selecting and allocating the right assets according to the desired objectives. It has been found that this nonlinear constraint problem cannot be effectively solved using a traditional approach. This paper covers and compares quantum-inspired versions of four popular evolutionary techniques with three benchmark datasets. Genetic algorithm, differential evolution, particle swarm optimization, ant colony optimization, and their quantum-inspired incarnations are implemented, and the results are compared. Experiments have been carried out with more than 10 years of stock price data from NASDAQ, BSE, and Dow Jones. This work proposes several enhancements to allocate funds efficiently, such as improved crossover techniques and dynamic and adaptive selection of parameters. Furthermore, it is observed that the quantum-inspired techniques outperform the classical counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Martin C (2012) Closed-end funds: a survey. Annu Rev Financ Econ 4(1):431–445

    Article  Google Scholar 

  2. Itzhak B-D, Francesco F, Rabih M (2017) Exchange-traded funds. Annu Rev Financ Econ 9:169–189

    Article  Google Scholar 

  3. Colin A, Stanley PR, Paul W (1997) Portfolio management with transaction costs. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 453(1958):551–562

  4. Renata M, Włodzimierz O, Speranza MG (2015) Portfolio optimization with transaction costs. In: Linear and Mixed Integer Programming for Portfolio Optimization, pages 47–62. Springer

  5. NASDAQ (2012) Historical data from nasdaq

  6. BSE (2013) Historical data from bombay stock exchange

  7. Jones Dow (2009) Historical data from dow jones

  8. Melanie M (1998) An introduction to genetic algorithms. MIT press

    Google Scholar 

  9. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. 3(2):95–99

  10. Holland John H (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  11. Kit Po W, Zhao Yang D (2005) Differential evolution, an alternative approach to evolutionary algorithm. In: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, pages 73–83. IEEE

  12. Opara Karol R, Jarosław A (2019) Differential evolution: a survey of theoretical analyses. Swarm Evol Comput 44:546–558

    Article  Google Scholar 

  13. James K, Russell E (1942) Particle swarm optimization in: Neural networks. In: Proceedings IEEE International Conference on 1995, pages 1942–1948

  14. James K, Russell E (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, volume 4, pages 1942–1948. IEEE

  15. Guang-Feng D, Woo-Tsong L (2010) Ant colony optimization for markowitz mean-variance portfolio model. In: Swarm, Evolutionary, and Memetic Computing: First International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2010, Chennai, India, December 16-18, 2010. Proceedings 1, pages 238–245. Springer

  16. Haugh Martin B, Lo Andrew W (2001) Computational challenges in portfolio management. Comput Sci Eng 3(3):54–59

    Article  Google Scholar 

  17. Margaret P, Randal R (2007) Managerial discretion and internal alignment under regulatory constraints and change. Strateg Manag J 28(11):1089–1112

    Article  Google Scholar 

  18. Cuypers Ilya RP, Jean-François H, Silverman Brian S, Gokhan E (2021) Transaction cost theory: Past progress, current challenges, and suggestions for the future. Acad Manag Ann 15(1):111–150

    Article  Google Scholar 

  19. Onnela J-P, Anirban C, Kimmo K, Janos K, Antti K (2003) Dynamics of market correlations: taxonomy and portfolio analysis. Phys Rev E 68(5):056110

    Article  Google Scholar 

  20. Sivanandam SN, Deepa SN, Sivanandam SN, Deepa SN (2008) Genetic algorithms. Springer

    Google Scholar 

  21. Paolo A, Stefan H, Giuliana RD (2017) Building a winning business model portfolio. MIT Sloan Manag Rev 58(4):49–54

    Google Scholar 

  22. Chun-Wei T, Chiang M-C (2023) Handbook of Metaheuristic Algorithms. Elsevier Academic Press, UK

    Google Scholar 

  23. Abhishek G, Siddhartha B (2022) A brief review of portfolio optimization techniques. Artif Intell Rev 56(5):3847–3876

    Google Scholar 

  24. Meghwani Suraj S, Manoj T (2017) Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm Evol Comput 37:104–125

    Article  Google Scholar 

  25. Ankita G, Gajala QS (2015) Non-dominated sorting genetic algorithm-ii-a succinct survey. Int J Comput Sci Inf Technol 6(1):252–255

    Google Scholar 

  26. Zitzler E, Thiele L (1998) An evolutionary algorithm for multiobjective optimization: The strength pareto approach. TIK report 43

  27. Rubén S, Ruiz Ana B, Mariano L (2017) Global wasf-ga: an evolutionary algorithm in multiobjective optimization to approximate the whole pareto optimal front. Evol Comput 25(2):309–349

    Article  Google Scholar 

  28. Corne David W, Knowles Joshua D, Oates Martin J (2000) The pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature, pages 839–848. Springer

  29. Yi C, Aimin Z, Swagatam D (2021) Utilizing dependence among variables in evolutionary algorithms for mixed-integer programming: a case study on multi-objective constrained portfolio optimization. Swarm Evol Comput 66:100928

    Article  Google Scholar 

  30. Diosan L (2005) A multi-objective evolutionary approach to the portfolio optimization problem. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), volume 2, pages 183–187. IEEE

  31. Skolpadungket P, Dahal K, Harnpornchai N (2007) Portfolio optimization using multi-obj ective genetic algorithms. In: 2007 IEEE Congress on Evolutionary Computation, pages 516–523. IEEE

  32. Dervis K (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Citeseer

    Google Scholar 

  33. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms, pages 169–178. Springer

  34. Darrell W (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Google Scholar 

  35. Erwin K, Engelbrecht A (2023) Meta–heuristics for portfolio optimization: Part i-review of meta–heuristics. In: International Conference on Swarm Intelligence, pages 441–452. Springer

  36. Mahapatra B (2023) Investigation of portfolio optimization with realistic constraints in Indian equity market using random immigration genetic algorithm

  37. Massimiliano K, Mojtaba M, Mohmmad M (2019) Portfolio optimization by improved nsga-ii and spea 2 based on different risk measures. Financ Innov 5:1–28

    Google Scholar 

  38. Khin L, Rong Q, Graham K (2014) A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Appl Soft Comput 24:757–772

    Article  Google Scholar 

  39. Yan C, Shingo M, Kotaro H (2011) Genetic relation algorithm with guided mutation for the large-scale portfolio optimization. Expert Syst Appl 38(4):3353–3363

    Article  Google Scholar 

  40. Lwin Khin T, Rong Q, MacCarthy Bart L (2017) Mean-var portfolio optimization: a nonparametric approach. Eur J Oper Res 260(2):751–766

    Article  MathSciNet  Google Scholar 

  41. Lwin Khin T (2015) Evolutionary approaches for portfolio optimization. PhD thesis, University of Nottingham

  42. Anagnostopoulos Konstantinos P, Georgios M (2010) A portfolio optimization model with three objectives and discrete variables. Comput Oper Res 37(7):1285–1297

    Article  MathSciNet  Google Scholar 

  43. Chiang CS, Chen TK, Al Mamum A (2008) Evolutionary multi-objective portfolio optimization in practical context. Int J Autom Comput 5:67–80

    Article  Google Scholar 

  44. Yevseyeva Iryna, Guerreiro Andreia P, Emmerich Michael TM, Fonseca Carlos M (2014) A portfolio optimization approach to selection in multiobjective evolutionary algorithms. In: Parallel Problem Solving from Nature–PPSN XIII: 13th International Conference, Ljubljana, Slovenia, September 13-17, 2014. Proceedings 13, pages 672–681. Springer

  45. Anagnostopoulos Konstantinos P, Georgios M (2011) The mean-variance cardinality constrained portfolio optimization problem: an experimental evaluation of five multiobjective evolutionary algorithms. Expert Syst Appl 38(11):14208–14217

    Google Scholar 

  46. Ankit T, Kinjal C (2021) A comprehensive survey on portfolio optimization, stock price and trend prediction using particle swarm optimization. Arch Comput Methods Eng 28:2133–2164

    Article  MathSciNet  Google Scholar 

  47. Bharne Pankaj K, Prabhune Sameer S (2017) Survey on combined swarm intelligence and ann for optimized daily stock market price. In: 2017 International Conference on Soft Computing and its Engineering Applications (icSoftComp), pages 1–6. IEEE

  48. Carbonell Jaime G, Michalski Ryszard S, Mitchell Tom M (1983) An overview of machine learning. Machine learning, pages 3–23

  49. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press

    Google Scholar 

  50. Zhang Z, Zohren S, Roberts S (2020) Deep learning for portfolio optimization. The Journal of Financial Data Science

  51. Peter H (2012) Machine learning in action. Simon and Schuster

    Google Scholar 

  52. Yilin M, Ruizhu H, Weizhong W (2021) Portfolio optimization with return prediction using deep learning and machine learning. Expert Syst Appl 165:113973

    Article  Google Scholar 

  53. Gérard B, Erwan S (2016) A random forest guided tour. TEST 25:197–227

    Article  MathSciNet  Google Scholar 

  54. Wara Shindi SM, Prastyo DD, Kuswanto H (2023) Value at risk estimation with hybrid-svr-garch-kde model for lq45 portfolio optimization. In: AIP Conference Proceedings, volume 2540. AIP Publishing

  55. Cao Hieu K, Cao Han K, Nguyen Binh T (2020) Delafo: An efficient portfolio optimization using deep neural networks. In: Advances in Knowledge Discovery and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings, Part I 24, pages 623–635. Springer

  56. Sen J, Dutta A, Mehtab S (2021) Stock portfolio optimization using a deep learning lstm model. In: 2021 IEEE Mysore Sub Section International Conference (MysuruCon), pages 263–271. IEEE

  57. Van-Dai T, Liu CHUAN-MING, Addis TD (2020) Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Appl Sci 10(2):437

    Article  Google Scholar 

  58. Yilin M, Ruizhu H, Weizhong W (2020) Prediction-based portfolio optimization models using deep neural networks. IEEE Access 8:115393–115405

    Article  Google Scholar 

  59. Wei ZZ, Yi CY, Wei ZX, Mei HM, Bo Z, Yi GM (2013) Short-term prediction model for a grid-connected photovoltaic system using EMD and GABPNN. Appl Mech Mater 291:74–82

    Google Scholar 

  60. Hongjoong KIM (2021) Mean-variance portfolio optimization with stock return prediction using xgboost. Econ Comput Econ Cybernet Stud Res 55(4):5

    Google Scholar 

  61. Liangyu M, Jiawei D, Jiangwei L, Xiaomin G (2021) Robust mean-risk portfolio optimization using machine learning-based trade-off parameter. Appl Soft Comput 113:107948

    Article  Google Scholar 

  62. Mr Rohith NR, Ms Yashaswini, Ms Rohini VK, Ms Sinchana HG. Future of finance in portfolio optimization

  63. Roman O, Samuel M, Enrique L (2019) Quantum computing for finance: overview and prospects. Rev Phys 4:100028

    Article  Google Scholar 

  64. Herman D, Googin C, Liu X, Galda A, Safro I, Sun Y, Pistoia M, Alexeev Y (2022) A survey of quantum computing for finance. arXiv preprint arXiv:2201.02773

  65. Naik A, Yeniaras E, Hellstern G, Prasad G, Vishwakarma SKLP (2023) From portfolio optimization to quantum blockchain and security: A systematic review of quantum computing in finance. arXiv preprint arXiv:2307.01155

  66. Cohen J, Khan A, Alexander C (2020) Portfolio optimization of 40 stocks using the dwave quantum annealer. arXiv preprint arXiv:2007.01430

  67. Erica G, Humble Travis S, Benjamin S (2021) Benchmarking quantum annealing controls with portfolio optimization. Phys Rev Appl 15(1):014012

    Article  Google Scholar 

  68. Davide V, Alexei K (2019) Reverse quantum annealing approach to portfolio optimization problems. Quant Mach Intell 1(1–2):17–30

    Google Scholar 

  69. Tatsumura K, Hidaka R, Nakayama J, Kashimata T, Yamasaki M (2023) Real-time trading system based on selections of potentially profitable, uncorrelated, and balanced stocks by np-hard combinatorial optimization. arXiv preprint arXiv:2307.06339

  70. Hoda Z, Nadimi-Shahraki Mohammad H, Gandomi Amir H (2021) QANA: quantum-based avian navigation optimizer algorithm. Eng Appl Artif Intell 104:104314

    Article  Google Scholar 

  71. Nadimi-Shahraki Mohammad H, Ali F, Hoda Z, Seyedali M (2022) Binary approaches of quantum-based avian navigation optimizer to select effective features from high-dimensional medical data. Mathematics 10(15):2770

    Article  Google Scholar 

  72. Hoda Z, Nadimi-Shahraki Mohammad H, Gandomi Amir H (2022) Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput Methods Appl Mech Eng 392:114616

    Article  MathSciNet  Google Scholar 

  73. Nadimi-Shahraki Mohammad H, Asghari VZ, Hoda Z, Seyedali M (2022) Binary starling murmuration optimizer algorithm to select effective features from medical data. Appl Sci 13(1):564

    Article  Google Scholar 

  74. Gang H, Jingyu Z, Guo W, Ching-Ter C (2023) Dtcsmo: an efficient hybrid starling murmuration optimizer for engineering applications. Comput Methods Appl Mech Eng 405:115878

    Article  MathSciNet  Google Scholar 

  75. Moosavi SKR, Zafar MH, Sanfilippo F, Akhter MN, Hadi SF (2023) Early mental stress detection using q-learning embedded starling murmuration optimiser-based deep learning model. IEEE Access

  76. Vandana B, Bhaskar B, Kumar SK (2023) Mdo: a novel murmuration-flight based dispersive optimization algorithm and its application to image security. J Amb Intell Human Comput 14(5):4809–4826

    Article  Google Scholar 

  77. Ahila Devi E, Chandrasekar A, Radhika S (2023) Wso-t2fsm: War strategy optimization-based type-2 fuzzy-based starling murmuration for addressing the routing problem in mobile ad hoc network. Concurr Comput Pract Exp 35(21):e7684

    Article  Google Scholar 

  78. Lammertjan D, Bert S (2015) Toward a theory of responsible investing: on the economic foundations of corporate social responsibility. Resour Energy Econ 41:103–121

    Article  Google Scholar 

  79. Li C, Lipei Z, Jun H, Helu X, Zhongbao Z (2021) Social responsibility portfolio optimization incorporating ESG criteria. J Manag Sci Eng 6(1):75–85

    Google Scholar 

  80. Sparkes R (2003) Socially responsible investment: a global revolution. John Wiley & Sons

    Google Scholar 

  81. Francesco C, Lorenzo L, Davide M, Maria RJ, Simone S, Giuseppe SV (2023) A bilevel approach to ESG multi-portfolio selection. CMS 20(1):24

    Article  MathSciNet  Google Scholar 

  82. Eiben Agoston E, Smith James E et al (2003) Introduction to evolutionary computing, vol 53. Springer

    Book  Google Scholar 

  83. Thomas B-B, Jürgen B, Jörn M, Olaf M (2014) Evolutionary algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4(3):178–195

    Google Scholar 

  84. Thomas B, Hans-Paul S (1993) An overview of evolutionary algorithms for parameter optimization. Evol Comput 1(1):1–23

    Article  Google Scholar 

  85. Xin Y, Yong L, Guangming L (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  86. Fogel David B, Fogel Lawrence J (2005) An introduction to evolutionary programming. In: Artificial Evolution: European Conference, AE 95 Brest, France, September 4–6, 1995 Selected Papers, pages 21–33. Springer

  87. Mitchell Melanie, Holland JH, Forrest S (1991) The royal road for genetic algorithms: Fitness landscapes and ga performance. Technical report, Los Alamos National Lab., NM (United States)

  88. Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (2012) Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer

    Google Scholar 

  89. Hans-Georg B (2001) The theory of evolution strategies. Springer

    Google Scholar 

  90. Koza John R (1994) Genetic programming II: automatic discovery of reusable programs. MIT press

    Google Scholar 

  91. Thomas B (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press

    Google Scholar 

  92. Maryam A, Henderson John C (1981) An evolutionary strategy for implementing a decision support system. Manage Sci 27(11):1309–1323

    Google Scholar 

  93. Urbanowicz Ryan J, Moore Jason H (2009) Learning classifier systems: a complete introduction, review, and roadmap. Journal of Artificial Evolution and Applications, 2009

  94. Mark H, Martin P (2011) An introduction and survey of estimation of distribution algorithms. Swarm Evol Comput 1(3):111–128

    Article  Google Scholar 

  95. James K (2006) Swarm intelligence. Springer

    Google Scholar 

  96. Marco D, Thomas S (2019) Ant colony optimization: overview and recent advances. Springer

    Google Scholar 

  97. David A, Kris B, Peter C, Katharine M, Peterson Brian G (2011) Differential evolution with deoptim: an application to non-convex portfolio optimization. The R Journal 3(1):27–34

    Article  Google Scholar 

  98. Yingjie S, Gaoyang Z, Bin Z, Huayue C, Wuquan D, Deng W (2023) An enhanced distributed differential evolution algorithm for portfolio optimization problems. Eng Appl Artif Intell 121:106004

    Article  Google Scholar 

  99. Sheldon H, Suganthan Ponnuthurai N (2015) Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization. IEEE Trans Cybernet 46(1):64–74

    Google Scholar 

  100. Sefiane Slimane, Benbouziane Mohamed (2012) Portfolio selection using genetic algorithm

  101. Ackora-Prah J, Gyamerah Samuel A, Andam Perpetual S (2014) A heuristic crossover for portfolio selection

  102. Padmavathi K, Priyanka Y (2017) Crossover operators in genetic algorithms: a review. Int J Comput Appl 162(10):34

    Google Scholar 

  103. Umbarkar Anant J, Sheth Pranali D (2015) Crossover operators in genetic algorithms: a review. ICTACT J Soft Comput 6(1):1083

    Article  Google Scholar 

  104. El-Shorbagy Mohammed A, Ella HA (2018) Particle swarm optimization from theory to applications. Int J Rough Sets Data Anal (IJRSDA) 5(2):1–24

    Article  Google Scholar 

  105. Tunchan C (2009) Particle swarm optimization approach to portfolio optimization. Nonlinear Anal Real World Appl 10(4):2396–2406

    Article  MathSciNet  Google Scholar 

  106. Majid J, Esmaile K, Behrooz K (2011) Particle swarm algorithm for solving systems of nonlinear equations. Comput Math Appl 62(2):566–576

    Article  MathSciNet  Google Scholar 

  107. Cavalcante Rodolfo C, Brasileiro Rodrigo C, Souza Victor LF, Nobrega Jarley P, Oliveira Adriano LI (2016) Computational intelligence and financial markets: a survey and future directions. Expert Syst Appl 55:194–211

    Article  Google Scholar 

  108. Jain Anil K, Jianchang M, Moidin Mohiuddin K (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44

    Article  Google Scholar 

  109. Hearst Marti A, Dumais Susan T, Edgar O, John P, Bernhard S (1998) Support vector machines. IEEE Intell Syst Appl 13(4):18–28

    Article  Google Scholar 

  110. Dervis K, Bahriye B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39:459–471

    Article  MathSciNet  Google Scholar 

  111. Michalis M, Changhe L, Shengxiang Y (2017) A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm Evol Comput 33:1–17

    Article  Google Scholar 

  112. Erwin K, Engelbrecht A (2020) Improved set-based particle swarm optimization for portfolio optimization. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1573–1580. IEEE

  113. Yi D, Ge X (2005) An improved PSO-based ANN with simulated annealing technique. Neurocomputing 63:527–533

    Article  Google Scholar 

  114. Yves C, Michaël S (2003) Simulated annealing for complex portfolio selection problems. Eur J Oper Res 150(3):546–571

    Article  Google Scholar 

  115. Saeid Q, Reza T, Mahdi B (2015) Portfolio optimization with simulated annealing algorithm. Financ Res J 17(1):141–158

    Google Scholar 

  116. Solin Mohammad M, Alamsyah A, Rikumahu B, Saputra Muhammad Apriandito A(2019) Forecasting portfolio optimization using artificial neural network and genetic algorithm. In: 2019 7th International Conference on Information and Communication Technology (ICoICT), pages 1–7. IEEE

  117. Yong W, Zixing C (2009) A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems. Front Comput Sci China 3:38–52

    Article  Google Scholar 

  118. Aamir N, Ehtasham M, Nasir S, Irfan KM, Muhammad S, Abdul M (2017) Solving convex and non-convex static and dynamic economic dispatch problems using hybrid particle multi-swarm optimization. Tehnički vjesnik 24(4):1095–1102

    Google Scholar 

  119. Marco D, Mauro B, Thomas S (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  120. Gutjahr Walter J (2003) A converging ACO algorithm for stochastic combinatorial optimization. In: Stochastic Algorithms: Foundations and Applications: Second International Symposium, SAGA 2003, Hatfield, UK, September 22-23, 2003. Proceedings 2, pages 10–25. Springer

  121. Jingan Y, Yanbin Z (2010) An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem. Appl Soft Comput 10(2):653–660

    Article  Google Scholar 

  122. Ray J, Bhattacharyya S, Bhupendro SN (2019) Conditional value-at-risk-based portfolio optimization: an ant colony optimization approach. In: Metaheuristic approaches to portfolio optimization, pages 82–108. IGI Global

  123. Forqandoost HK, Tohid K (2012) Ant colony optimization approach to portfolio optimization-a lingo companion. Int J Trade Econ Financ 3(2):148–153

    Google Scholar 

  124. Massika I, Méziane A (2023) Multiobjective evolutionary metaheuristic approach to the constrained portfolio optimization problem. Pesquisa Operacional 43:e266962

    Article  Google Scholar 

  125. Shanu V, Millie P, Vaclav S (2021) A comprehensive review on NSGA-ii for multi-objective combinatorial optimization problems. IEEE Access 9:57757–57791

    Article  Google Scholar 

  126. David MM (2007) Quantum computing explained. John Wiley & Sons

    Google Scholar 

  127. Nicholas Y (1988) An introduction to Hilbert space. Cambridge University Press

    Google Scholar 

  128. Adriano B, Bennett Charles H, Richard C, DiVincenzo DP, Norman M, Peter S, Tycho S, Smolin John A, Harald W (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457

    Article  Google Scholar 

  129. Aharonov D, Kitaev A, Nisan N (1998) Quantum circuits with mixed states. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 20–30

  130. Fisher Matthew PA, Vedika K, Adam N, Sagar V (2023) Random quantum circuits. Ann Rev Condens Matter Phys 14:335–379

    Article  Google Scholar 

  131. Abdessaied N, Soeken M, Drechsler R (2014) Quantum circuit optimization by hadamard gate reduction. In: Reversible Computation: 6th International Conference, RC 2014, Kyoto, Japan, July 10-11, 2014. Proceedings 6, pages 149–162. Springer

  132. Riesebos L, Fu X, Varsamopoulos S, Almudever CG, Bertels K (2017) Pauli frames for quantum computer architectures. In: Proceedings of the 54th Annual Design Automation Conference 2017, pages 1–6

  133. Shepherd Dan J (2006) On the role of hadamard gates in quantum circuits. Quantum Inf Process 5:161–177

    Article  MathSciNet  Google Scholar 

  134. Tumulka R (2009) Dirac notation. In: Compendium of Quantum Physics, pages 172–174. Springer

  135. DiVincenzo David P (1998) Quantum gates and circuits. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454(1969):261–276

  136. Kuk-Hyun H, Jong-Hwan K (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6(6):580–593

    Article  Google Scholar 

  137. Tosio K (1987) On nonlinear schrödinger equations. In Annales de l’IHP Physique théorique 46:113–129

    Google Scholar 

  138. Nick L (2002) Fractional schrödinger equation. Physical Review E 66(5):056108

    Google Scholar 

  139. Ramamurti S (2012) Principles of quantum mechanics. Springer

    Google Scholar 

  140. De Gosson MA (2016) Principles Of Newtonian And Quantum Mechanics. The Need For Planck’s Constant. H. World Scientific, The

  141. Shirley Jon H (1965) Solution of the schrödinger equation with a hamiltonian periodic in time. Phys Rev 138(4B):B979

    Article  Google Scholar 

  142. Karmakar S, Dey A, Saha I (2017) Use of quantum-inspired metaheuristics during last two decades. In: 2017 7th International Conference on Communication Systems and Network Technologies (CSNT), pages 272–278. IEEE

  143. Papalitsas C, Karakostas P, Kastampolidou K (2017) A quantum inspired gvns: Some preliminary results. In: GeNeDis 2016: Computational Biology and Bioinformatics, pages 281–289. Springer

  144. Gharehchopogh Farhad Soleimanian (2023) Quantum-inspired metaheuristic algorithms: comprehensive survey and classification. Artif Intell Rev 56(6):5479–5543

    Article  Google Scholar 

  145. Rebentrost P, Lloyd S (2018) Quantum computational finance: quantum algorithm for portfolio optimization. arXiv preprint arXiv:1811.03975

  146. Hakemi S, Houshmand M, KheirKhah E, Hosseini SA (2022) A review of recent advances in quantum-inspired metaheuristics. Evolutionary Intelligence, pages 1–16

  147. Davis Lawrence (1991) Handbook of genetic algorithms. CumInCAD

  148. Glover F, Laguna M (1998) Tabu search. In: Handbook of combinatorial optimization, pages 2093–2229. Springer

  149. Narayanan A, Moore M (1996) Quantum-inspired genetic algorithms. In: Proceedings of IEEE international conference on evolutionary computation, pages 61–66. IEEE

  150. Han K-H, Park K-H, Lee C-H, Kim J-H (2001) Parallel quantum-inspired genetic algorithm for combinatorial optimization problem. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), volume 2, pages 1422–1429. IEEE

  151. Saad Hatem MH, Chakrabortty Ripon K, Saber E, Ryan Michael J (2021) Quantum-inspired genetic algorithm for resource-constrained project-scheduling. IEEE Access 9:38488–38502

    Article  Google Scholar 

  152. Hua-Pei C, Yao-Hsin C, Chia-Hui C, Shu-Yu K, Yueh-Min H (2014) A quantum-inspired TABU search algorithm for solving combinatorial optimization problems. Soft Comput 18(9):1771–1781

    Article  Google Scholar 

  153. Yao-Hsin C, Shu-Yu K, Chi-Yuan C, Han-Chieh C (2014) A rule-based dynamic decision-making stock trading system based on quantum-inspired TABU search algorithm. IEEE Access 2:883–896

    Article  Google Scholar 

  154. Shu-Yu K, Yao-Hsin C (2017) Entanglement-enhanced quantum-inspired TABU search algorithm for function optimization. IEEE Access 5:13236–13252

    Article  Google Scholar 

  155. Deng W, Hailong L, Junjie X, Huimin Z, Yingjie S (2020) An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Trans Instrum Meas 69(10):7319–7327

    Article  Google Scholar 

  156. Alvarez-Alvarado Manuel S, Alban-Chacón Francisco E, Lamilla-Rubio Erick A, Rodríguez-Gallegos Carlos D, Washington V (2021) Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields. Sci Rep 11(1):1–22

    Google Scholar 

  157. Agrawal RK, Baljeet K, Parul A (2021) Quantum inspired particle swarm optimization with guided exploration for function optimization. Appl Soft Comput 102:107122

    Article  Google Scholar 

  158. Dey S, Bhattacharyya S, Maulik U (2018) Quantum-inspired automatic clustering technique using ant colony optimization algorithm. In: Quantum-Inspired Intelligent Systems for Multimedia Data Analysis, pages 27–54. IGI Global

  159. Mohsin Sayed A, Mohamed DS, Ahmed Y (2021) Qiaco: a quantum dynamic cost ant system for query optimization in distributed database. IEEE Access 9:15833–15846

    Article  Google Scholar 

  160. Manju A, Nigam Madhav J (2014) Applications of quantum inspired computational intelligence: a survey. Artif Intell Rev 42:79–156

    Article  Google Scholar 

  161. Bhattacharyya S, Maulik U, Dutta P (2016) Quantum Inspired Computational Intelligence: Research and Applications. Morgan Kaufmann

  162. Talbi H, Draa A (2017) A new real-coded quantum-inspired evolutionary algorithm for continuous optimization. Appl Soft Comput 61:765–791

    Article  Google Scholar 

  163. Han K-H, Kim J-H (2000) Genetic quantum algorithm and its application to combinatorial optimization problem. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), volume 2, pages 1354–1360. IEEE

  164. Silveira LR, Tanscheit R, Vellasco M (2012) Quantum-inspired genetic algorithms applied to ordering combinatorial optimization problems. In: 2012 IEEE Congress on Evolutionary Computation, pages 1–7. IEEE

  165. Utpal R, Sudarshan R, Susmita N (2014) Optimization with quantum genetic algorithm. Int J Comput Appl 102(16):1–7

    Google Scholar 

  166. Swagatam D, Nagaratnam SP (2010) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Google Scholar 

  167. Su H, Yang Y (2008) Quantum-inspired differential evolution for binary optimization. In: 2008 Fourth International Conference on Natural Computation, volume 1, pages 341–346. IEEE

  168. Pampara G, Engelbrecht Andries P, Franken N (2006) Binary differential evolution. In: 2006 IEEE international conference on evolutionary computation, pages 1873–1879. IEEE

  169. Pampara G, Franken N , Engelbrecht Andries P (2005) Combining particle swarm optimisation with angle modulation to solve binary problems. In: 2005 IEEE congress on evolutionary computation, volume 1, pages 89–96. IEEE

  170. Samuel M, Carlos K, Escolastico S, Samuel F-L, Jorge L-H, Enrique L, Roman O (2022) Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks. Phys Rev Res 4(1):013006

    Article  Google Scholar 

  171. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), volume 1, pages 325–331. IEEE

  172. Djaafar Z, Farid N, Abdelouahab M (2016) Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput 20:2781–2799

    Article  Google Scholar 

  173. Ke M, Gang WH, ZhaoYang D, Po WK (2009) Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans Power Syst 25(1):215–222

    Google Scholar 

  174. Shanshan T, Ur RO, Ur RS, Shafi U, Muhammad W, Ran Z (2020) A novel quantum inspired particle swarm optimization algorithm for electromagnetic applications. IEEE Access 8:21909–21916

    Article  Google Scholar 

  175. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  176. Wang L , Niu Q , Fei M (2007) A novel quantum ant colony optimization algorithm. In: International Conference on Life System Modeling and Simulation, pages 277–286. Springer

  177. Mrityunjay G, Nivedita D, Debdeep M, Amlan C (2022) A novel quantum algorithm for ant colony optimisation. IET Quant Commun 3(1):13–29

    Article  Google Scholar 

  178. Saltelli A, Tarantola S, Campolongo F, Ratto M et al (2004) Sensitivity analysis in practice: a guide to assessing scientific models, vol 1. Wiley Online Library

  179. Jon H, Will U (2017) Salib: an open-source python library for sensitivity analysis. J Open Source Software 2(9):97

    Article  Google Scholar 

  180. Iwanaga T, Usher W, Herman J (2022) Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environmental Systems Modelling 4:18155

    Article  Google Scholar 

  181. Hamby DM (1995) A comparison of sensitivity analysis techniques. Health Phys 68(2):195–204

    Article  Google Scholar 

  182. Emanuele B, Elmar P (2016) Sensitivity analysis: a review of recent advances. Eur J Oper Res 248(3):869–887

    Article  MathSciNet  Google Scholar 

  183. Peter D, Begg Colin B, Weinstein Milton C, Peter B, McNeil Barbara J (1985) Probabilistic sensitivity analysis using monte Carlo simulation: a practical approach. Med Decis Making 5(2):157–177

    Article  Google Scholar 

  184. Botchkarev A (2018) Evaluating performance of regression machine learning models using multiple error metrics in azure machine learning studio. Available at SSRN 3177507

  185. Pereira Dulce G, Anabela A, Melo MF (2015) Overview of Friedman’s test and post-hoc analysis. Commun Stat Simul Comput 44(10):2636–2653

    Article  MathSciNet  Google Scholar 

  186. Jack C (1985) A wilcoxon-type test for trend. Stat Med 4(1):87–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Bhattacharyya.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Research involving Human Participants and/or Animals

No human participants and/or animals were involved in this study.

Informed consent

All authors consent to submit the article for consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunjan, A., Bhattacharyya, S. Quantum-inspired meta-heuristic approaches for a constrained portfolio optimization problem. Evol. Intel. (2024). https://doi.org/10.1007/s12065-024-00929-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12065-024-00929-4

Keywords

Navigation