Skip to main content

A new hybrid optimization technique based on antlion and grasshopper optimization algorithms

Abstract

This paper proposes a new hybrid algorithm that merges the main features of two well-known metaheuristic algorithms; Grasshopper Optimization Algorithm (GOA) and Antlion Optimization (ALO) algorithm. ALO is strong in exploitation due to the mechanism of antlions in hunting other insects. On the other hand, the social forces in GOA represent the strong capability of exploration all over the search space. So, these features give the chance to combine ALO and GOA in one hybrid algorithm that significantly enhances the performance of both methods. The proposed hybrid algorithm is tested on 32 well-known benchmark test functions, 13 functions of the challenging CEC2015 functions, and two real problems in antenna array synthesis where the elements’ excitation amplitudes and phases are optimized to minimize the maximum sidelobe level and impose nulls at specific angles. Comparisons show that the proposed algorithm outperforms 18 well-known optimization methods, including ALO and GOA, in the majority of these tests, with huge differences in some of them, which prove the stability, robustness, and efficiency of the proposed method over other robust algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  2. Spall JC (2003) Introduction to stochastic search and optimization: estimation, simulation, and control, Wiley

  3. El-Ghazali T (2009) Metaheuristics: from design to implementation, Wiley

  4. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513

    Article  Google Scholar 

  5. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science

  6. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72

    Article  Google Scholar 

  7. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life

  8. Laskar N, Guha K, Chatterjee I, Chanda S, Baishnab K, Paul P (2019) HWPSO: a new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems. Appl Intell 49(1):265–291

    Article  Google Scholar 

  9. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  10. Nenavath H, Jatoth R (2018) Hybrid SCA–TLBO: a novel optimization algorithm for global optimization and visual tracking. Neural Comput Appl

  11. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  12. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877

    Article  Google Scholar 

  13. Neshat M, Sepidnam G, Sargolzaei M (2013) Swallow swarm optimization algorithm: a new method to optimization. Neural Comput Appl 23(2):429–454

    Article  Google Scholar 

  14. Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimization. Int J Comput Sci Eng 6:132–140

    Google Scholar 

  15. Kaveh A, Bakhshpoori T, Afshari E (2014) An efficient hybrid particle swarm and swallow swarm optimization algorithm. Comput Struct 143:40–59

    Article  Google Scholar 

  16. Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M (2014) Chaotic swarming of particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147

    Article  Google Scholar 

  17. Ali A, Hassanien A (2015) A survey of metaheuristics methods for bioinformatics applications. In: Applications of intelligent optimization in biology and medicine, Springer, pp 23–46

  18. Behera S, Sahoo S, Pati B (2015) A review on optimization algorithms and application to wind energy integration to grid. Renew Sustain Energy Rev 48:214–227

    Article  Google Scholar 

  19. Rechenberg I (1973) Evolution strategy: optimization of technical systems by means of biological evolution, vol. 104

  20. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    MathSciNet  MATH  Article  Google Scholar 

  21. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  22. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  23. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: World congress on nature and biologically inspired computing (NaBIC)

  24. Basturk B, Karaboga D (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, Indiana

  25. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  26. Yang XS (2010) Firefly algorithm. Eng Optim 221–230

  27. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–80

    Article  Google Scholar 

  28. Kumar V, Chhabra JK, Kumar D (2015) A hybrid approach for data clustering using expectation-maximization and parameter adaptive harmony search algorithm. In: International conference on future computa- tional technologies

  29. Pan W (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74

    Article  Google Scholar 

  30. Yang XS, Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  31. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Software, vol. 59, p. 53–70

  32. Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

  33. Blum C, Roli A, Sampels M (2008) Hybrid metaheuristics—an emerging approach to optimization, Springer

  34. Talbi E-G (2002) A taxonomy of hybrid metaheuristics. J Heurist 8:541–564

    Article  Google Scholar 

  35. Mirjalili S, Wang G, Coelho LS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25:1423–1435

    Article  Google Scholar 

  36. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  37. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  38. Raju M, Saikia L, Sinha N (2016) Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller. Int J Electr Power Energy Syst 80:52–63

    Article  Google Scholar 

  39. Amaireh A, Alzoubi A, Dib N (2017) Design of linear antenna arrays using antlion and grasshopper optimization algorithms. In: IEEE Jordan conference on applied electrical engineering and computing technologies

  40. Amaireh A, Al-Zoubi A, Dib N (2020) The optimal synthesis of scanned linear antenna arrays. Int J Electr Comput Eng 10(2):1477–1484

    Google Scholar 

  41. Amaireh A, Al-Zoubi A, Dib N (2019) Sidelobe-level suppression for circular antenna array via new hybrid optimization algorithm based on antlion and grasshopper optimization algorithms. Progress Electromagnet Res C, vol. 93, p 49:63

  42. Zainal I, Yasin Z, Zakaria Z (2017) Network reconfiguration for loss minimization and voltage profile improvement using ant lion optimizer. In: IEEE conference on systems, process and control (ICSPC)

  43. M. Wang, C. Wu, L. Wang, D. Xiang, X. Huang, "A feature selection approach for hyperspectral image based on modifed ant lion optimizer," in Knowl-Based Syst , 2019.

  44. Tung N, Chakravorty S (2016) Ant lion optimizer based approach for optimal scheduling of thermal units for small scale electrical economic power dispatch problem. Int J Grid Distrib Comput 9:211–224

    Article  Google Scholar 

  45. Mouassa S, Bouktir T, Salhi A (2017) Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Eng Sci Technol Int J 20:885–895

    Google Scholar 

  46. Mafarja M, Mirjalili S (2018) Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection. Soft Comput, pp 1–17

  47. Abualigah L (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer, Berlin

  48. Wu Z, Yu D, Kang X (2017) Parameter identifcation of photovoltaic cell model based on improved ant lion optimizer. Energy Convers Manag 151:107–115

    Article  Google Scholar 

  49. Dinkar S, Deep K Opposition based laplacian ant lion optimizer. J Comput Sci 23:71–90

  50. Eltag K, Aslamx M, Ullah R (2019) Dynamic stability enhancement using fuzzy pid control technology for power system. Int J Control Autom Syst 17:234–242

    Article  Google Scholar 

  51. Rayyam M, Zazi M, Barradi Y (2018) A new metaheuristic unscented kalman flter for state vector estimation of the induction motor based on ant lion optimizer. COMPEL-Int J Comput Math Electr Electr Eng 37:1054–1068

    Article  Google Scholar 

  52. Digalakis J, Margaritis K (2000) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506

    MathSciNet  MATH  Article  Google Scholar 

  53. Molga M, Smutnicki C (2005) Test functions for optimization needs

  54. Yang X (2010) Test problems in optimization. Eng Optim Introduction Metaheuristic Appl

  55. Liang J, Suganthan P, Deb K (2005) Novel composition test functions for numerical global optimization. In: IEEE swarm intelligence symposium

  56. Suganthan P, Hansen N, Liang J, Deb K, Chen Y, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real parameter optimization. KanGAL report

  57. Liang J, Qu B, Suganthan P, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Zhengzhou University, Zhengzhou China And Technical Report, Nanyang Technological University, Singapore, Computational Intelligence Laboratory

    Google Scholar 

  58. Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the third annual conference on evolutionary programming, San Diego

  59. Mirjalili S (2016) A sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  60. Yang XS, Karamanoglu M, He X Flower pollination algorithm: a novel approach for multiobjective optimization. Journal 46(9):1222–1237, Engineering Optimization

  61. Mirjalili S, Gandomi A, Mirjalili S, Saremi S, Faris H, Mirjalili S (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  62. Mirjalili S, Hashim SZM A new hybrid PSOGSA algorithm for function optimization. In: International conference on computer and information application, Tianjin

  63. Guo S, Tsai JS, Yang C, Hsu P (2015) A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set. In: 2015 IEEE congress on evolutionary computation (CEC)

  64. Amaireh A, Dib N, Al-Zoubi A (2022) Synthesis of new antenna arrays with arbitrary geometries based on the Superformula. Int J Electr Comput Eng 12(6)

  65. Dib N, Goudos S, Muhsen H (2010) Application of Taguchi’s optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays. Progress Electromagnet Res 102:159–180

    Article  Google Scholar 

  66. Dib N (2017) Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organisms search. Neural Comput Appl

  67. Dib N, Amaireh A, Al-Zoubi A (2019) On the optimal synthesis of elliptical antenna arrays. Int J Electron 106(1):121–133

    Article  Google Scholar 

  68. Al-Zoubi A, Amaireh A, Dib N (2022) Comparative and comprehensive study of linear antenna arrays’ synthesis. Int J Electr Comput Eng 12(3):2645–2654

    Google Scholar 

  69. Amaireh A, Dib N, Al-Zoubi A (2020) The optimal synthesis of concentric elliptical antenna arrays. Int J Electron 107(3):461–479

    Article  Google Scholar 

  70. Balanis C (2012) Antenna theory: analysis and design. Wiley, New York

    Google Scholar 

  71. Sharaqa A (2012) Biogeography-based optimization method and its application in electromagnetics, Master thesis, Jordan University for Science and Technology

  72. Mandal D, Ghoshal S, Bhattacharjee A (2010) Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique. J Infrared Millimeter Terahertz Waves 31:667–680

    Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors declare no conflict of interest in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Atef Amaireh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 16 kb)

Appendix

Appendix

See Tables

Table 4 Unimodal test functions

4,

Table 5 Multimodal and composite functions

5,

Table 6 Results of unimodal benchmark functions

6,

Table 7 Results of multimodal and composite benchmark functions

7,

Table 8 CEC2015 benchmark test functions

8 and

Table 9 The normalized results of CEC2015 functions

9.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amaireh, A.A., Al-Zoubi, A.S. & Dib, N.I. A new hybrid optimization technique based on antlion and grasshopper optimization algorithms. Evol. Intel. (2022). https://doi.org/10.1007/s12065-022-00749-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12065-022-00749-4

Keywords

  • Optimization
  • Metaheuristics algorithms
  • Evolutionary algorithms
  • Benchmark algorithm
  • Antlion optimization algorithm
  • Grasshopper optimization algorithm