Skip to main content

Advertisement

Log in

Seeking a balance between population diversity and premature convergence for real-coded genetic algorithms with crossover operator

Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

The major issue for optimization with genetic algorithms (GAs) is getting stuck on a local optimum or a low computation efficiency. In this research, we propose a new real-coded based crossover operator by using the Exponentiated Pareto distribution (EPX), which aims to preserve the two extremes. We used EPX with three the most reputed mutation operators: Makinen, Periaux and Toivanen mutation (MPTM), non uniform mutation (NUM) and power mutation (PM). The experimental results with eighteen well-known models depict that our proposed EPX operator performs better than the other competitive crossover operators. The comparison analysis is evaluated through mean, standard deviation and the performance index. Significance of EPX vs competitive is examined by performing the two-tailed t-test. Hence, the new crossover scheme appears to be significant as well as comparable to establish the crossing among parents for better offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Holland J (1975) Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control and Artificial Intelligence. MIT press, Cambridge

  2. Zheng SR, Lai JM, Liu GL, Gang T (2006) Improved real coded hybrid genetic algorithm. Comput Appl 26(8):1959–1962

    Google Scholar 

  3. Liu HH, Cui C, Chen J (2013) An improved genetic algorithm for solving travel salesman problem. Trans Beijing Inst Technol 33(4):390–393

    MathSciNet  MATH  Google Scholar 

  4. Jingi W, Yang X, Lei C (2012) The application of GA-based PID parameter optimization for the control of superheated steam temperature. In: International conference on machine learning and cybernetics. vol 3, pp 835–839

  5. Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  6. Deb K (2001) Nonlinear goal programming using multi-objective genetic algorithms. J Op Res Soc 52(3):291–302

    Article  MATH  Google Scholar 

  7. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Sci 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  8. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  9. Eberhart RC, Shi Y, Kennedy J (2001) Swarm intelligence. Elsevier, Netherlands

    Google Scholar 

  10. Bäck T, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization. Evol Comput 1(1):1–23

    Article  Google Scholar 

  11. Chen CT, Wu CK, Hwang C (2008) Optimal design and control of CPU heat sink processes. IEEE Trans Compon Packag Technol 31(1):184–195

    Article  Google Scholar 

  12. Chen CT, Chuang YC (2010) An intelligent run-to-run control strategy for chemical-mechanical polishing processes. IEEE Trans Semicond Manuf 23(1):109–120

    Article  MathSciNet  Google Scholar 

  13. Dyer JD, Hartfield RJ, Dozier GV, Burkhalter JE (2012) Aerospace design optimization using a steady state real-coded genetic algorithm. Appl Math Comput 218(9):4710–4730

    MATH  Google Scholar 

  14. Tsai CW, Lin CL, Huang CH (2010) Microbrushless DC motor control design based on real-coded structural genetic algorithm. IEEE/ASME Trans Mech 16(1):151–159

    Article  Google Scholar 

  15. Valarmathi K, Devaraj D, Radhakrishnan TK (2009) Real-coded genetic algorithm for system identification and controller tuning. Appl Math Model 33(8):3392–3401

    Article  Google Scholar 

  16. Goldberg DE (1990) Real-coded genetic algorithms, virtual alphabets and blocking. University of Illinois at Urbana Champaign, Champaign

    MATH  Google Scholar 

  17. Lawrence D (1991) Handbook of genetic algorithms. Van Nostrand Reinhold

  18. Wright AH (1991) Genetic algorithms for real parameter optimization. Found Genet Algorithms 1:205–218

    MathSciNet  Google Scholar 

  19. Janikow CZ, Michalewicz Z (1991) An experimental comparison of binary and floating point representations in genetic algorithms. ICGA

  20. Hussain A, Muhammad YS (2020) Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator. Complex Intell Sys 6(1):1–14

  21. Eiben AE, Schut MC, de Wilde AR (2006) Is self-adaptation of selection pressure and population size possible?–A case study. In: Parallel problem solving from nature-PPSN IX, pp 900–909

  22. Michalewicz Z, Logan T, Swaminathan S (1994) Evolutionary operators for continuous convex parameter spaces. In Proceedings of the 3rd annual conference on evolutionary programming, PP 84–97

  23. Radcliffe NJ (1991) Equivalence class analysis of genetic algorithms. Complex Syst 5(2):183–205

    MathSciNet  MATH  Google Scholar 

  24. Mühlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the breeder genetic algorithm in continuous parameter optimization. Evol Comput 1(1):25–49

    Article  Google Scholar 

  25. Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. Found Genet Algorithms 2:187–202

    Google Scholar 

  26. Michalewicz Z, Janikow CZ (1991) Handling constraints in genetic algorithms. ICGA 151–157

  27. Voigt HM (1992) Fuzzy evolutionary algorithms. International Computer Science Institute

  28. Voigt HM, Mühlenbein H, Cvetkovic D (1995) Fuzzy recombination for the breeder genetic algorithm. In: Proceedings of sixth international conferene on genetic algorithms

  29. Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recombination with simplex crossover in real coded genetic algorithms. In: Proceedings of the 1st annual conference on genetic and evolutionary computation, vol 1, pp 657–664

  30. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  31. Tutkun N (2009) Optimization of multimodal continuous functions using a new crossover for the real-coded genetic algorithms. Expert Syst Appl 36(4):8172–8177

    Article  Google Scholar 

  32. Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895–911

    MathSciNet  MATH  Google Scholar 

  33. Ono I, Kita H, Kobayashi S (2003) A real-coded genetic algorithm using the unimodal normal distribution crossover. In: Advances in evolutionary computing, pp 213–237

  34. Ono I, Kita H, Kobayashi S (1999) A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: Effects of self-adaptation of crossover probabilities. In: Proceedings of the 1st annual conference on genetic and evolutionary computation. vol 1, pp 496–503

  35. Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10(4):371–395

    Article  Google Scholar 

  36. Sinha A, Tiwari S, Deb K (2005) A population-based, steady-state procedure for real-parameter optimization. IEEE Congr Evol Comput 1:514–521

    Google Scholar 

  37. Ling SH, Leung FH (2007) An improved genetic algorithm with average-bound crossover and wavelet mutation operations. Soft Comput 11(1):7–31

    Article  MATH  Google Scholar 

  38. Herrera F, Lozano M, Sanchez AM (2003) A taxonomy for the crossover operator for real-coded genetic algorithms: An experimental study. Int J Intell Syst 18(3):309–338

    Article  MATH  Google Scholar 

  39. Mäkinen RA, Périaux J, Toivanen J (1999) Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms. Int J Numer Methods Fluids 30(2):149–159

    Article  MATH  Google Scholar 

  40. Miettinen K, Mäkelä MM, Toivanen J (2003) Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms. J Global Optim 27(4):427–446

    Article  MathSciNet  MATH  Google Scholar 

  41. Michalewicz Z (2013) Genetic algorithms+ data structures= evolution programs. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  42. Michalewicz Z (1995) Genetic algorithms, numerical optimization, and constraints. In: Proceedings of the sixth international conference on genetic algorithms. vol 195, pp 151–158

  43. Ali MZ, Awad NH, Suganthan PN, Shatnawi AM, Reynolds RG (2018) An improved class of real-coded Genetic Algorithms for numerical optimization. Neurocomput 275:155–166

    Article  Google Scholar 

  44. Jin YF, Yin ZY, Shen SL, Zhang DM (2017) A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Probl Sci Eng 25(9):1343–1366

    Article  MathSciNet  MATH  Google Scholar 

  45. Pattanaik JK, Basu M, Dash DP (2018) Improved real coded genetic algorithm for dynamic economic dispatch. J Electr Syst Inf Technol 5(3):349–362

    Article  Google Scholar 

  46. Elsayed SM, Sarker RA, Essam DL (2014) A new genetic algorithm for solving optimization problems. Eng Appl Artif Intell 27:57–69

    Article  Google Scholar 

  47. Al-Naqi A, Erdogan AT, Arslan T (2013) Adaptive three-dimensional cellular genetic algorithm for balancing exploration and exploitation processes. Soft Comput 17(7):1145–1157

    Article  Google Scholar 

  48. Ahmad I, Almanjahie IM (2020) A novel parent centric crossover with the log-logistic probabilistic approach using multimodal test problems for real-coded genetic algorithms. Math Probl Eng 2020. https://doi.org/10.1155/2020/2874528

  49. Wang J, Cheng Z, Ersoy OK, Zhang P, Dai W, Dong Z (2018) Improvement analysis and application of real-coded genetic algorithm for solving constrained optimization problems. Math Probl Eng 2018. https://doi.org/10.1155/2018/5760841

  50. Chuang YC, Chen CT, Hwang C (2015) A real-coded genetic algorithm with a direction-based crossover operator. Inf Sci 305:320–348

    Article  Google Scholar 

  51. Das AK, Pratihar DK (2019) A directional crossover (DX) operator for real parameter optimization using genetic algorithm. Appl Intell 49(5):1841–1865

    Article  Google Scholar 

  52. Das AK, Pratihar DK (2020) A direction-based exponential crossover operator for real-coded genetic algorithm.  In: Singh B, Roy A, Maiti D (eds) Recent advances in theoretical, applied, computational and experimental mechanics. Lecture Notes in Mechanical Engineering. Springer, Singapore

  53. Chuang YC, Chen CT, Hwang C (2016) A simple and efficient real-coded genetic algorithm for constrained optimization. Appl Soft Comput 38:87–105

    Article  Google Scholar 

  54. Zhao Y, Cai Y, Cheng D (2017) A novel local exploitation scheme for conditionally breeding real-coded genetic algorithm. Multimed Tools Appl 76(17):17955–17969

    Article  Google Scholar 

  55. Rolland L, Chandra R (2016) The forward kinematics of the 6–6 parallel manipulator using an evolutionary algorithm based on generalized generation gap with parent-centric crossover. Robotica 34(1):1

    Article  Google Scholar 

  56. Da Ronco CC, Benini E (2013) A simplex crossover based evolutionary algorithm including the genetic diversity as objective. Appl Soft Comput 13(4):2104–2123

    Article  Google Scholar 

  57. Naqvi FB, Yousaf Shad M, Khan S (2021) A new logistic distribution based crossover operator for real-coded genetic algorithm. J Stat Comput Simul 91(4):817–835

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhra Batool Naqvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 101 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, F.B., Shad, M.Y. Seeking a balance between population diversity and premature convergence for real-coded genetic algorithms with crossover operator. Evol. Intel. 15, 2651–2666 (2022). https://doi.org/10.1007/s12065-021-00636-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00636-4

Keywords

Navigation