Skip to main content

Advertisement

Log in

Optimal scheduling of a micro-grid with multi-period islanding constraints using hybrid CFCS technique

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

This paper proposes an efficient technique for optimum scheduling of micro-grids with multi-period islanding restrictions. The proposed method is joint implementation of Cuttle Fish Algorithm (CFA) and Crow Search Algorithm (CSA); is known CFCS method. Here, the CFA search behavior is modified by the CSA update position. The proposed CFCS system is utilized for optimal scheduling of micro-grid and considerably decreases the calculation load. The main purpose of proposed work is diminish the micro-grid operation cost together with the dispatch-able units operation cost, cost of power transmission as main grid with inconvenience cost recognized with consumers. The cost of power transmission from main phase can be positive or negative based on the flow direction of transmission line linking the microcircuit to main phase. Negative cost that represents an export of power to main grid emerges as economic advantage of micro-grid. Cost of inconvenience implies the penalty of modifiable loads programming outside the time intervals particular by the consumers. Constant penalty factor is utilized for prioritizing loads with respect to operation sensitivity inside the particular time intervals, in which a superior value of the penalty factor implies a least flexible load based on time interval operation settings. The value of the penalty factor is chosen reasonably greater to unit generation cost and market price. In proposed technique, the CFCS is used for establishing the correct program of the MG combinations according to load side power range. The CFCS method, objective function can be defined as system data subject to equality and inequality limitations. At that time, CFCS model is performed at MATLAB/Simulink working platform and performance is estimated to existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Paquette A, Reno M, Harley R, Divan D (2014) Sharing transient loads : causes of unequal transient load sharing in islanded microgrid operation. IEEE Ind Appl Mag 20:23–34. https://doi.org/10.1109/mias.2013.2288408

    Article  Google Scholar 

  2. Vandoorn TL, Meersman B, Degroote L, Renders B, Vandevelde L (2011) A control strategy for islanded microgrids with dc-link voltage control. IEEE Trans Power Deliv 26(2):703–713. https://doi.org/10.1109/TPWRD.2010.2095044

    Article  Google Scholar 

  3. Kim H, Kinoshita T, Lim Y (2011) Talmudic approach to load shedding of islanded microgrid operation based on multiagent system. J Electr Eng Technol 6:284–292. https://doi.org/10.5370/jeet.2011.6.2.284

    Article  Google Scholar 

  4. Conti S, Nicolosi R, Rizzo S, Zeineldin H (2012) Optimal dispatching of distributed generators and storage systems for MV Islanded Microgrids. IEEE Trans Power Deliv 27:1243–1251. https://doi.org/10.1109/tpwrd.2012.2194514

    Article  Google Scholar 

  5. Elrayyah A, Cingoz F, Sozer Y (2015) Construction of nonlinear droop relations to optimize islanded microgrid operation. IEEE Trans Ind Appl 51:3404–3413. https://doi.org/10.1109/tia.2014.2387484

    Article  Google Scholar 

  6. Mahapatra B, Nayyar A (2019) Home energy management system (HEMS): concept, architecture, infrastructure, challenges and energy management schemes. Energy Syst. https://doi.org/10.1007/s12667-019-00364-w

    Article  Google Scholar 

  7. Kim H, Kinoshita T, Shin M (2010) A multiagent system for autonomous operation of islanded microgrids based on a power market environment. Energies 3:1972–1990. https://doi.org/10.3390/en3121972

    Article  Google Scholar 

  8. Farag AM, El-Saadany E (2013) Voltage and reactive power impacts on successful operation of islanded microgrids. IEEE Trans Power Syst 28:1716–1727. https://doi.org/10.1109/tpwrs.2012.2223491

    Article  Google Scholar 

  9. Kim AR, Kim GH, Heo S, Park M, Yu IK, Kim HM (2013) SMES application for frequency control during islanded microgrid operation. Phys C Supercond 484:282–286. https://doi.org/10.1016/j.physc.2012.03.065

    Article  Google Scholar 

  10. Vandoorn T, Meersman B, De Kooning J, Vandevelde L (2012) Analogy between conventional grid control and islanded microgrid control based on a global DC-link voltage droop. IEEE Trans Power Deliv 27:1405–1414. https://doi.org/10.1109/tpwrd.2012.2193904

    Article  Google Scholar 

  11. Babazadeh M, Karimi H (2013) A Robust two-degree-of-freedom control strategy for an islanded microgrid. IEEE Trans Power Deliv 28:1339–1347. https://doi.org/10.1109/tpwrd.2013.2254138

    Article  Google Scholar 

  12. Chen Z, Luo A, Wang H, Chen Y, Li M, Huang Y (2015) Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid. Int J Electr Power Energy Syst 66:133–143. https://doi.org/10.1016/j.ijepes.2014.10.054

    Article  Google Scholar 

  13. Kahrobaeian A, Ibrahim Mohamed Y (2015) Networked-based hybrid distributed power sharing and control for Islanded microgrid systems. IEEE Trans Power Electron 30:603–617. https://doi.org/10.1109/tpel.2014.2312425

    Article  Google Scholar 

  14. Minchala-Avila L, Garza-Castanon L, Zhang Y, Ferrer H (2016) Optimal energy management for stable operation of an islanded microgrid. IEEE Trans Industr Inf 12:1361–1370. https://doi.org/10.1109/tii.2016.2569525

    Article  Google Scholar 

  15. Tang X, Hu X, Li N, Deng W, Zhang G (2016) A novel frequency and voltage control method for islanded microgrid based on multienergy storages. IEEE Transactions on Smart Grid 7:410–419. https://doi.org/10.1109/tsg.2014.2381235

    Article  Google Scholar 

  16. Shafiee Q, Guerrero J, Vasquez J (2014) Distributed secondary control for islanded microgrids—a novel approach. IEEE Trans Power Electron 29:1018–1031. https://doi.org/10.1109/tpel.2013.2259506

    Article  Google Scholar 

  17. Kim JY, Jeon JH, Kim SK, Cho C, Park JH, Kim HM, Nam KY (2010) Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation. IEEE Trans Power Electron 25:3037–3048. https://doi.org/10.1109/tpel.2010.2073488

    Article  Google Scholar 

  18. Mythili S, Thiyagarajah K, Rajesh P, Shajin FH (2020) Ideal position and size selection of unified power flow controllers (UPFCs) to upgrade the dynamic stability of systems: an antlion optimiser and invasive weed optimisation Algorithm. HKIE Trans 27:25–37

    Article  Google Scholar 

  19. Mumtaz F, Syed M, Hosani M, Zeineldin H (2016) A novel approach to solve power flow for islanded microgrids using modified newton raphson with droop control of DG. IEEE Trans Sustain Energy 7:493–503. https://doi.org/10.1109/tste.2015.2502482

    Article  Google Scholar 

  20. Kim H, Kinoshita T, Lim Y, Kim T (2010) A bankruptcy problem approach to load-shedding in multiagent-based microgrid operation. Sensors 10:8888–8898. https://doi.org/10.3390/s101008888

    Article  Google Scholar 

  21. Liu S, Wang X, Liu P (2015) Impact of communication delays on secondary frequency control in an islanded microgrid. IEEE Trans Industr Electron 62:2021–2031. https://doi.org/10.1109/tie.2014.2367456

    Article  Google Scholar 

  22. Durbhaka G K, Selvaraj B, Nayyar A (2019) Firefly swarm: metaheuristic swarm intelligence technique for mathematical optimization. In: Data Management, Analytics and Innovation Springer, Singapore, pp.457–466

  23. Nayyar A, Le DN, Nguyen NG (2018) Advances in swarm intelligence for optimizing problems in computer science. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Nayyar A, Garg S, Gupta D, Khanna A (2018) Evolutionary computation: theory and algorithms. In Advances in Swarm Intelligence for Optimizing Problems in Computer Science (pp. 1–26).Chapman and Hall/CRC.

  25. Nayyar A, Nguyen NG (2018) Introduction to swarm intelligence. Advances in Swarm Intelligence for Optimizing Problems in Computer Science 53–78.

  26. Bakar NN, Hassan MY, Sulaima MF, Na’imMohdNasir M, Khamis A (2017) Microgrid and load shedding scheme during islanded mode: A review. Renew Sustain Energy Rev 71:161–169. https://doi.org/10.1016/j.rser.2016.12.049

    Article  Google Scholar 

  27. Sefidgar-Dezfouli A, Joorabian M, Mashhour E (2019) A multiple chance-constrained model for optimal scheduling of microgrids considering normal and emergency operation. Int J Electr Power Energy Syst 112:370–380. https://doi.org/10.1016/j.ijepes.2019.05.026

    Article  Google Scholar 

  28. Ebrahimi M, Amjady N (2019) Adaptive robust optimization framework for day-ahead microgrid scheduling. Int J Electr Power Energy Syst 107:213–223. https://doi.org/10.1016/j.ijepes.2018.11.029

    Article  Google Scholar 

  29. Salehpour M, Moghaddas Tafreshi S (2019) The effect of price responsive loads uncertainty on the risk-constrained optimal operation of a smart micro-grid. Int J Electr Power Energy Syst 106:546–560. https://doi.org/10.1016/j.ijepes.2018.10.027

    Article  Google Scholar 

  30. Qiu H, Gu W, Xu Y, Wu Z, Zhou S, Pan G (2019) Robustly multi-microgrid scheduling: stakeholder-parallelizing distributed optimization. IEEE Trans Sustain Energy. https://doi.org/10.1109/tste.2019.2915585

    Article  Google Scholar 

  31. Faridnia N, Habibi D, Lachowicz S, Kavousifard A (2019) Optimal scheduling in a microgrid with a tidal generation. Energy 171:435–443. https://doi.org/10.1016/j.energy.2018.12.079

    Article  Google Scholar 

  32. Askari MR, Niknam T (2020) A novel optimal scheduling framework for hybrid microgrids based on alternating direction method of multipliers. Iranian J Sci Technol Trans Electr Eng 44(1):265–277. https://doi.org/10.1007/s40998-019-00229-z

    Article  Google Scholar 

  33. Hemmati M, Mohammadi-Ivatloo B, Abapour M, Anvari-Moghaddam A (2020) Optimal chance-constrained scheduling of reconfigurable microgrids considering islanding operation constraints. IEEE Syst J 14(4):5340–5349. https://doi.org/10.1109/JSYST.2020.2964637

    Article  Google Scholar 

  34. Bektas KM, Kayakutlu G (2020) A hybrid heuristic algorithm for optimal energy scheduling of grid-connected micro grids. Energy Syst. https://doi.org/10.1007/s12667-020-00380-1

    Article  Google Scholar 

  35. Aghdam F, Mohammadi-Ivatloo B, Kalantari N (2020) A chance-constrained energy management in multi-microgrid systems considering degradation cost of energy storage elements. J Energy Storage 29:101416

    Article  Google Scholar 

  36. Wen Y, Chung CY, Liu X, Che L (2019) Microgrid dispatch with frequency-aware islanding constraints. IEEE Trans Power Syst 34(3):2465–2468. https://doi.org/10.1109/tpwrs.2019.2895573

    Article  Google Scholar 

  37. Shah P, Mehta B (2019) Microgrid optimal scheduling with renewable energy sources considering islanding constraints. Iranian J Sci Technol Trans Electr Eng. https://doi.org/10.1007/s40998-019-00254-y

    Article  Google Scholar 

  38. Wu Y, Lim GJ, Shi J (2019) Stability-constrained microgrid operation scheduling incorporating frequency control reserve. IEEE Trans Smart Grid. https://doi.org/10.1109/tsg.2019.2929695

    Article  Google Scholar 

  39. Gazijahani FS, Ajoulabadi A, Ravadanegh SN, Salehi J (2020) Joint energy and reserve scheduling of renewable powered microgrids accommodating price responsive demand by scenario: a risk-based augmented epsilon-constraint approach. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.121365

    Article  Google Scholar 

  40. Moghaddas-Tafreshi SM, Mohseni S, Karami ME, Kelly S (2019) Optimal energy management of a grid-connected multiple energy carrier micro-grid. Appl Thermal Eng 152:796–806. https://doi.org/10.1016/j.applthermaleng.2019.02.113

    Article  Google Scholar 

  41. Zhang C, Xu Y, Dong ZY (2019) Robustly coordinated operation of a multi-energy micro-grid in grid-connected and islanded modes under uncertainties. IEEE Trans Sustain Energy. https://doi.org/10.1109/tste.2019.2900082

    Article  Google Scholar 

  42. Khodaei A (2014) Microgrid optimal scheduling with multi-period islanding constraints. IEEE Trans Power Syst 29:1383–1392. https://doi.org/10.1109/tpwrs.2013.2290006

    Article  Google Scholar 

  43. Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25:1–13. https://doi.org/10.1016/s0167-6377(99)00016-4

    Article  MathSciNet  MATH  Google Scholar 

  44. Kawas B, Thiele A (2009) A log-robust optimization approach to portfolio management. OR Spectr 33:207–233. https://doi.org/10.1007/s00291-008-0162-3

    Article  MathSciNet  MATH  Google Scholar 

  45. Rodrigues Y, Monteiro M, Abdelaziz M, Wang L, de Souza AZ, Ribeiro P (2019) Improving the autonomy of islanded microgrids through frequency regulation. Int J Electr Power Energy Syst 115:105499. https://doi.org/10.1016/j.ijepes.2019.105499

    Article  Google Scholar 

  46. Qian T, Liu Y, Zhang WH, Tang WH (2019) Event-triggered updating method in centralized and distributed secondary controls for islanded microgrid restoration. IEEE Trans Smart Grid. https://doi.org/10.1109/tsg.2019.2937366

    Article  Google Scholar 

  47. Sun C, Joos G, Bouffard F (2019) Adaptive coordination for power and SoC limiting control of energy storage in Islanded AC microgrid with impact Load. IEEE Trans Power Deliv. https://doi.org/10.1109/tpwrd.2019.2916034

    Article  Google Scholar 

  48. Sun Q, Sun Q, Qin D (2018) Adaptive fuzzy droop control for optimized power sharing in an islanded microgrid. Energies 12:45. https://doi.org/10.3390/en12010045

    Article  Google Scholar 

  49. Delavari H, Naderian S (2019) Backstepping fractional sliding mode voltage control of an islanded microgrid. IET Gener Transm Distrib 13:2464–2473. https://doi.org/10.1049/iet-gtd.2018.5909

    Article  Google Scholar 

  50. Ganjian-Aboukheili M, Shahabi M, Shafiee Q, Guerrero J (2019) Seamless transition of microgrids operation from grid-connected to islanded mode. IEEE Trans Smart Grid. https://doi.org/10.1109/tsg.2019.2947651

    Article  Google Scholar 

  51. Abadi M, Sadeghzadeh S (2019) A control approach with seamless transition capability for a single-phase inverter operating in a microgrid. Int J Electr Power Energy Syst 111:475–485. https://doi.org/10.1016/j.ijepes.2019.04.012

    Article  Google Scholar 

  52. Khodaei A (2014) Resiliency-oriented microgrid optimal scheduling. IEEE Trans Smart Grid 5:1584–1591. https://doi.org/10.1109/tsg.2014.2311465

    Article  Google Scholar 

  53. Hussain A, Bui V, Kim H (2019) Resilience-oriented optimal operation of networked hybrid microgrids. IEEE Trans Smart Grid 10:204–215. https://doi.org/10.1109/tsg.2017.2737024

    Article  Google Scholar 

  54. Hussain A, Bui V, Kim H (2017) Optimal operation of hybrid microgrids for enhancing resiliency considering feasible islanding and survivability. IET Renew Power Gener 11:846–857. https://doi.org/10.1049/iet-rpg.2016.0820

    Article  Google Scholar 

  55. Hussain A, Bui V, Kim H (2017) Fuzzy logic-based operation of battery energy storage systems (BESSs) for enhancing the resiliency of hybrid microgrids. Energies 10:271. https://doi.org/10.3390/en10030271

    Article  Google Scholar 

  56. Zadsar M, Haghifam M, MiriLarimi S (2017) Approach for self-healing resilient operation of active distribution network with microgrid. IET Gener Transm Distrib 11:4633–4643. https://doi.org/10.1049/iet-gtd.2016.1783

    Article  Google Scholar 

  57. Balasubramaniam K, Saraf P, Hadidi R, Makram E (2016) Energy management system for enhanced resiliency of microgrids during islanded operation. Electric Power Syst Res 137:133–141. https://doi.org/10.1016/j.epsr.2016.04.006

    Article  Google Scholar 

  58. Hussain A, Rousis AO, Konstantelos I, Strbac G, Jeon J, Kim HM (2019) Impact of uncertainties on resilient operation of microgrids: a data-driven approach. IEEE Access 7:14924–14937. https://doi.org/10.1109/access.2019.2891786

    Article  Google Scholar 

  59. Dong J, Zhu L, Su Y, Ma Y, Liu Y, Wang F, Tolbert LM, Glass J, Bruce L (2018) Battery and backup generator sizing for a resilient microgrid under stochastic extreme events. IET Gener Transm Distrib 12:4443–4450. https://doi.org/10.1049/iet-gtd.2018.5883

    Article  Google Scholar 

  60. Hussain A, Bui V, Kim H (2018) A resilient and privacy-preserving energy management strategy for networked microgrids. IEEE Trans Smart Grid 9:2127–2139. https://doi.org/10.1109/tsg.2016.2607422

    Article  Google Scholar 

  61. Gao H, Chen Y, Xu Y, Liu C (2016) Resilience-oriented critical load restoration using microgrids in distribution systems. IEEE Trans Smart Grid 7:2837–2848. https://doi.org/10.1109/tsg.2016.2550625

    Article  Google Scholar 

  62. Shahidehpour M, Liu X, Li Z, Cao Y (2016) Microgrids for enhancing the power grid resilience in extreme conditions. IEEE Trans Smart Grid. https://doi.org/10.1109/tsg.2016.2579999

    Article  Google Scholar 

  63. Panteli M, Trakas D, Mancarella P, Hatziargyriou N (2017) Power systems resilience assessment: hardening and smart operational enhancement strategies. Proc IEEE 105:1202–1213. https://doi.org/10.1109/jproc.2017.2691357

    Article  Google Scholar 

  64. Simonov M (2014) Dynamic partitioning of DC microgrid in resilient clusters using event-driven approach. IEEE Trans Smart Grid 5:2618–2625. https://doi.org/10.1109/tsg.2014.2302992

    Article  Google Scholar 

  65. Chanda S, Srivastava A (2016) Defining and enabling resiliency of electric distribution systems with multiple microgrids. IEEE Trans Smart Grid 7:2859–2868. https://doi.org/10.1109/tsg.2016.2561303

    Article  Google Scholar 

  66. Hussain A, Bui V, Kim H (2019) Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Appl Energy 240:56–72. https://doi.org/10.1016/j.apenergy.2019.02.055

    Article  Google Scholar 

  67. Eesa A, Orman Z, Brifcani A (2015) A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. Expert Syst Appl 42:2670–2679. https://doi.org/10.1016/j.eswa.2014.11.009

    Article  Google Scholar 

  68. Transpire Online, (2019) Cuttlefish Algorithm (CFA): Propelled from Color Changing Behavior of Cuttlefishes for Solving Optimization Problems, Transpire Online 2019. Available at: https://transpireonline.blog/2019/10/03/cuttlefish-algorithm-cfa-propelled-from-color-changing-behavior-of-cuttlefishes-for-solving-optimization-problems/. [Accessed on: Jan, 2020]

  69. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  70. Nikmehr N, Najafi-Ravadanegh S, Khodaei A (2017) Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty. Appl Energy 198:267–279. https://doi.org/10.1016/j.apenergy.2017.04.071

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kavitha Kumari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K.S.K., Babu, R.S.R. Optimal scheduling of a micro-grid with multi-period islanding constraints using hybrid CFCS technique. Evol. Intel. 15, 723–742 (2022). https://doi.org/10.1007/s12065-020-00548-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00548-9

Keywords

Navigation