Skip to main content
Log in

Vine copula-based EDA for dynamic multiobjective optimization

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Dynamic Multiobjective Problems cover a set of real-world problems that have many conflicting objectives. These problems are challenging and well known by the dynamic nature of their objective functions, constraint functions, and problem parameters which often change over time. In fact, dealing with these problems has not been investigated in detail using the Estimation of Distribution Algorithms (EDAs). Thus, we propose in this paper an EDA-based on Vine Copulas algorithm to deal with Dynamic Multiobjective Problems (DMOPs). Vines Copulas are graphical models that represent multivariate dependence using bivariate copulas. The proposed Copula-based Estimation of Distribution Algorithm, labeled Dynamic Vine-Copula Estimation of Distribution Algorithm (DynVC-EDA), is used to implement two search strategies. The first strategy is an algorithm that uses the model as a memory to save the status of the best solutions obtained during the current generation. The second strategy is a prediction-based algorithm that uses the history of the best solutions to predict a new population when a change occurs. The proposed algorithms are tested using a set of benchmarks provided with CEC2015 and the Gee-Tan-Abbass. Statistical findings show that the DynVC-EDA is competitive to the state-of-the-art methods in dealing with dynamic multiobjective optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://github.com/senbong87/dmo_benchmark.

References

  1. Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44(2):182–198

    Article  MathSciNet  Google Scholar 

  2. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795. https://doi.org/10.1007/s11227-017-2046-2

    Article  Google Scholar 

  3. Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer, Berlin

    Book  Google Scholar 

  4. Abualigah LMQ, Hanandeh ES (2015) Applying genetic algorithms to information retrieval using vector space model. Int J Comput Sci Eng Appl 5(1):19

    Google Scholar 

  5. Al-Sahaf H, Bi Y, Chen Q, Lensen A, Mei Y, Sun Y, Tran B, Xue B, Zhang M (2019) A survey on evolutionary machine learning. J R Soc N Zeal 49(2):205–228. https://doi.org/10.1080/03036758.2019.1609052

    Article  Google Scholar 

  6. Azzouz R, Bechikh S, Ben Said L (2017) Dynamic multi-objective optimization using evolutionary algorithms: a survey. Springer, Cham, pp 31–70

    Book  Google Scholar 

  7. Azzouz R, Bechikh S, Said LB (2017) A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy. Soft Comput 21(4):885–906

    Article  Google Scholar 

  8. Bedford T, Cooke RM (2002) Vines-a new graphical model for dependent random variables. Ann Stat 30(4):1031–1068. https://doi.org/10.1214/aos/1031689016

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheriet A, Cherif F (2015) A posteriori Pareto front diversification using a copula-based estimation of distribution algorithm. Int J Adv Comput Sci Appl (IJACSA) 6:13

    Google Scholar 

  10. Cheriet A, Cherif F, Taleb-Ahmed A (2016) Fast solutions enhancing using a copula-based EDA and SVM for many-objective problems. IFAC-PapersOnLine 49(12):781–786

    Article  Google Scholar 

  11. Cheriet A, Santana R (2018) Modeling dependencies between decision variables and objectives with copula models. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’18. ACM, New York, NY, USA, pp 175–176. https://doi.org/10.1145/3205651.3205694

  12. Cheriet A, Santana R (2019) Optimizing permutation-based problems with a discrete vine-copula as a model for eda. In: Proceedings of the genetic and evolutionary computation conference companion. ACM, pp 143–144

  13. Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, New York

    Book  Google Scholar 

  14. Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems, vol 242. Springer, Berlin

    Book  Google Scholar 

  15. Cuesta-Infante A, Santana R, Hidalgo JI, Bielza C, Larrañaga P (2010) Bivariate empirical and n-variate Archimedean copulas in estimation of distribution algorithms. In: Proceedings of the 2010 congress on evolutionary computation CEC-2010. IEEE, Barcelone, Spain, pp 1–8. https://doi.org/10.1109/CEC.2010.5586557

  16. Czado C (2010) Pair-copula constructions of multivariate copulas. Copula theory and its applications. Springer, Berlin, pp 93–109

    Book  Google Scholar 

  17. Deb K, Karthik S et al (2007) Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Evolutionary multi-criterion optimization. Springer, pp 803–817

  18. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  19. Devroye L (1986) Sample-based non-uniform random variate generation. In: Proceedings of the 18th conference on winter simulation, WSC ’86. ACM, New York, NY, USA, pp 260–265. https://doi.org/10.1145/318242.318443

  20. Etxeberria R, Larranaga P (1999) Global optimization using Bayesian networks. In: Second symposium on artificial intelligence (CIMAF-99). Habana, Cuba, pp 332–339

  21. Farina M, Deb K, Amato P (2004) Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans Evol Comput 8(5):425–442

    Article  Google Scholar 

  22. Gao Y (2009) Multivariate estimation of distribution algorithm with Laplace transform Archimedean copula. In: International conference on information engineering and computer science, 2009. ICIECS 2009. IEEE, pp 1–5

  23. Gao Y, Hu X, Liu H (2010) Estimation of distribution algorithm based on multivariate Gaussian copulas. In: 2010 IEEE International conference on progress in informatics and computing (PIC), vol 1. IEEE, pp 254–257

  24. Gee SB, Tan KC, Abbass HA (2017) A benchmark test suite for dynamic evolutionary multiobjective optimization. IEEE Trans Cybern 47(2):461–472. https://doi.org/10.1109/TCYB.2016.2519450

    Article  Google Scholar 

  25. Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44(2):199–213

    Article  MathSciNet  Google Scholar 

  26. Genest C, Rivest LP (1993) Statistical inference procedures for bivariate archimedean copulas. J Am Stat Assoc 88(423):1034–1043. https://doi.org/10.1080/01621459.1993.10476372

    Article  MathSciNet  MATH  Google Scholar 

  27. Goh CK, Tan KC (2008) A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans Evol Comput 13(1):103–127

    Google Scholar 

  28. González-Fernández Y, Soto M (2012) A survey of estimation of distribution algorithms based on copulas. Technical Report, 2012, technical Report ICIMAF p 679

  29. Hauschild M, Pelikan M (2011) An introduction and survey of estimation of distribution algorithms. Swarm Evol Comput 1(3):111–128

    Article  Google Scholar 

  30. Helbig M, Engelbrecht A (2015) Benchmark functions for cec, special session and competition on dynamic multi-objective optimization. Technical report

  31. Helbig M, Engelbrecht AP (2013) Benchmarks for dynamic multi-objective optimisation. In: 2013 IEEE symposium on computational intelligence in dynamic and uncertain environments (CIDUE). IEEE, pp 84–91

  32. Helbig M, Engelbrecht AP (2013) Issues with performance measures for dynamic multi-objective optimisation. In: 2013 IEEE symposium on computational intelligence in dynamic and uncertain environments (CIDUE). IEEE, pp 17–24

  33. Helbig M, Engelbrecht AP (2013) Performance measures for dynamic multi-objective optimisation algorithms. Inf Sci 250:61–81

    Article  Google Scholar 

  34. Hyrš M, Schwarz J (2014) Multivariate Gaussian copula in estimation of distribution algorithm with model migration. In: 2014 IEEE symposium on foundations of computational intelligence (FOCI). IEEE, pp 114–119

  35. Joe H (2014) Dependence modeling with copulas. CRC Press, Boca Raton

    Book  Google Scholar 

  36. Kim G, Silvapulle MJ, Silvapulle P (2007) Comparison of semiparametric and parametric methods for estimating copulas. Comput Stat Data Anal 51(6):2836–2850

    Article  MathSciNet  Google Scholar 

  37. Larranaga P, Lozano JA (2002) Estimation of distribution algorithms: a new tool for evolutionary computation, vol 2. Springer, Berlin

    Book  Google Scholar 

  38. Martins MS, Delgado M, Lüders R, Santana R, GonçSalves RA, de Almeida CP (2018) Exploring the probabilistic graphic model of a hybrid multi-objective Bayesian estimation of distribution algorithm. Appl Soft Comput 73:328–343

    Article  Google Scholar 

  39. Martins MSR, Yafrani ME, Santana R, Delgado M, Lüders R, Ahiod B (2018) On the performance of multi-objective estimation of distribution algorithms for combinatorial problems. In: 2018 IEEE congress on evolutionary computation (CEC), pp 1–8. https://doi.org/10.1109/CEC.2018.8477970

  40. Muruganantham A, Tan KC, Vadakkepat P (2016) Solving the IEEE CEC 2015 dynamic benchmark problems using Kalman filter based dynamic multiobjective evolutionary algorithm. In: Lavangnananda K, Phon-Amnuaisuk S, Engchuan W, Chan JH (eds) Intelligent and evolutionary systems. Springer, Cham, pp 239–252

    Chapter  Google Scholar 

  41. Nelsen RB (2013) An introduction to copulas, vol 139. Springer, Berlin

    MATH  Google Scholar 

  42. Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24

    Article  Google Scholar 

  43. Pelikan M, Sastry K, Goldberg DE (2006) Multiobjective estimation of distribution algorithms. In: Pelikan M, Sastry K, Cantú-Pa E (eds) Scalable optimization via probabilistic modeling. Springer, Berlin, pp 223–248

    Chapter  Google Scholar 

  44. Salinas-Gutiérrez R, Hernández-Aguirre A, Villa-Diharce ER (2009) Using copulas in estimation of distribution algorithms. In: MICAI 2009: advances in artificial intelligence. Springer, pp 658–668

  45. Salinas-Gutiérrez R, Hernández-Aguirre A, Villa-Diharce ER (2010) D-vine EDA: a new estimation of distribution algorithm based on regular vines. In: Proceedings of the 12th annual conference on genetic and evolutionary computation. ACM, pp 359–366

  46. Salinas-Gutiérrez R, Hernández-Aguirre A, Villa-Diharce ER (2013) Incorporating regular vines in estimation of distribution algorithms. In: EVOLVE-A Bridge between Probability, set oriented numerics and evolutionary computation. Springer, pp 91–121

  47. Sastry K, Goldberg DE, Pelikan M (2005) Limits of scalability of multiobjective estimation of distribution algorithms. In: The 2005 IEEE congress on evolutionary computation, 2005, vol 3. IEEE, pp 2217–2224

  48. Shakya S, McCall J (2007) Optimization by estimation of distribution with deum framework based on markov random fields. Int J Autom Comput 4(3):262–272

    Article  Google Scholar 

  49. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B (Methodol) 53:683–690

    MathSciNet  MATH  Google Scholar 

  50. Sklar A (1973) Random variables, distribution functions, and copulas. Kybernetica 28:449–460

    MathSciNet  MATH  Google Scholar 

  51. Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32(16):12363–12379. https://doi.org/10.1007/s00521-020-04832-8

    Article  Google Scholar 

  52. Soto M, Gonzalez-Fernandez Y (2010) Vine estimation of distribution algorithm. Technical report. 2010-561, ICIMAF

  53. Soto M, Gonzalez-Fernandez Y, Ochoa A (2012) Modeling with copulas and vines in estimation of distribution algorithms. arXiv preprint arXiv:1210.5500

  54. Soto M, Ochoa A, Arderí RJ (2007) Gaussian copula estimation of distribution algorithm. Technical report. 2007-406, ICIMAF

  55. Soto MR, Ochoa A, González-Fernández Y, Milanés Y, Álvarez A, Carrera D, Moreno E (2012) Vine estimation of distribution algorithms with application to molecular docking. In: Shakya S, Santana R (eds) Markov networks in evolutionary computation. Springer, Berlin, pp 175–190

    Google Scholar 

  56. Tsukahara H (2005) Semiparametric estimation in copula models. Can J Stat 33(3):357–375

    Article  MathSciNet  Google Scholar 

  57. Wang L, Guo X, Zeng J, Hong Y (2010) Using Gumbel copula and empirical marginal distribution in estimation of distribution algorithm. In: 2010 Third international workshop on advanced computational intelligence (IWACI). IEEE, pp 583–587

  58. Wang LF, Zeng JC (2010) Estimation of distribution algorithm based on copula theory. In: Chen Y (ed) Exploitation of linkage learning in evolutionary algorithms. Springer, Berlin, pp 139–162

    Chapter  Google Scholar 

  59. Wang LF, Zeng JC, Hong Y (2009) Estimation of distribution algorithm based on archimedean copulas. In: Proceedings of the first ACM/SIGEVO summit on genetic and evolutionary computation, GEC ’09. Association for Computing Machinery, New York, NY, USA, pp 993–996. https://doi.org/10.1145/1543834.1543991

  60. Wang Y, Li B (2010) Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization. Memet Comput 2(1):3–24

    Article  Google Scholar 

  61. Yan J et al (2007) Enjoy the joy of copulas: with a package copula. J Stat Softw 21(i04):1–21

    Google Scholar 

  62. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  63. Zhang Q, Liu W, Li H (2009) The performance of a new version of moea/d on CEC09 unconstrained mop test instances. IEEE Cong Evol Compt 1:203–208

    Google Scholar 

  64. Zhang Q, Yang S, Jiang S, Wang R, Li X (2019) Novel prediction strategies for dynamic multiobjective optimization. IEEE Trans Evol Comput 24(2):260–274

    Article  Google Scholar 

  65. Zhang Q, Zhou A, Jin Y (2008) RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput 12(1):41–63

    Article  Google Scholar 

  66. Zhou A, Jin Y, Zhang Q (2014) A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans Cybern 44(1):40–53

    Article  Google Scholar 

  67. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49

    Article  Google Scholar 

  68. Zitzler E, Laumanns M, Thiele L, Zitzler E, Zitzler E, Thiele L, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm

  69. Zou F, Yen GG, Tang L, Wang C (2021) A reinforcement learning approach for dynamic multi-objective optimization. Inf Sci 546:815–834. https://doi.org/10.1016/j.ins.2020.08.101

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I want to express my very great appreciation to Professor Roberto Santana for his valuable and constructive suggestions during the planning and development of this research paper. His willingness to give his time so generously has been very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhakim Cheriet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheriet, A. Vine copula-based EDA for dynamic multiobjective optimization. Evol. Intel. 15, 455–479 (2022). https://doi.org/10.1007/s12065-020-00523-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00523-4

Keywords

Navigation