Skip to main content
Log in

A Kriging-based multi-point sequential sampling optimization method for complex black-box problem

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

The Generalized Efficient Global Optimization (GEGO) algorithm assisted by Kriging model can solve black-box problem of complex computing. However, a single sampling point obtained in each iteration process may cause longer objective-evaluation time and slower convergence speed in contrast with multi-point sampling optimization methods. For this, a Kriging-based multi-point sequential sampling optimization (KMSSO) method is presented. The proposed method uses uncertainty estimate information of Kriging to construct the multiple-point generalized Expected Improvement (EI) criterion. In optimization cycle, this criterion is maximized to produce the Pareto front data, which will be further screened to obtain final expensive evaluation points. For numerical tests and an engineering case, KMSSO is compared to GEGO and HAM algorithm and is shown to deliver better results. It is also proves that when multiple points are added per cycle, the optimization accuracy and convergence property are both improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang M et al (2016) Transformation from business process models to BPEL with overlapped patterns involved. Int J High Perform Comput Netw 9(1–2):82–92

    Article  Google Scholar 

  2. Li Y et al (2019) A Kriging-based bi-objective constrained optimization method for fuel economy of hydrogen fuel cell vehicle. Int J Hydrog Energy 44(56):29658–29670

    Article  Google Scholar 

  3. Lu W et al (2016) A new method of QoS prediction based on probabilistic latent feature analysis and cloud similarity. Int J High Perform Comput Netw 9(1–2):52–60

    Article  Google Scholar 

  4. Li Y et al (2019) A sequential Kriging method assisted by trust region strategy for proxy cache size optimization of the streaming media video data due to fragment popularity distribution. Multimed Tools Appl 78(20):28737–28756

    Article  Google Scholar 

  5. Hu M-C et al (2019) Development of Kriging-approximation simulated annealing optimization algorithm for parameters calibration of porous media flow model. Stoch Environ Res Risk Assess 33(2):395–406

    Article  Google Scholar 

  6. Chang SE et al (2016) Cocktail: a service-oriented cloud storage architecture for enhancing service quality. Int J High Perform Comput Netw 9(1–2):19–30

    Article  Google Scholar 

  7. Cassioli A, Schoen F (2013) Global optimization of expensive black box problems with a known lower bound. J Global Optim 57(1):177–190

    Article  MathSciNet  MATH  Google Scholar 

  8. Jones DR (2001) A taxonomy of global optimization methods based on response surfaces. J Global Optim 21(4):345–383

    Article  MathSciNet  MATH  Google Scholar 

  9. Müller J, Piché R (2011) Mixture surrogate models based on Dempster–Shafer theory for global optimization problems. J Global Optim 51(1):79–104

    Article  MathSciNet  MATH  Google Scholar 

  10. Duvigneau R, Chandrashekar P (2012) Kriging-based optimization applied to flow control. Int J Numer Methods Fluids 69(11):1701–1714

    Article  Google Scholar 

  11. Regis RG (2014) Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points. Eng Optim 46(2):218–243

    Article  MathSciNet  Google Scholar 

  12. Ller J, Shoemaker CA, Robert P (2013) SO-MI: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems. Comput Oper Res 40(5):1383–1400

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen L et al (2019) Comparative study of HDMRs and other popular metamodeling techniques for high dimensional problems. Struct Multidiscip Optim 59(1):21–42

    Article  MathSciNet  Google Scholar 

  14. Shi R et al (2019) Filter-based adaptive Kriging method for black-box optimization problems with expensive objective and constraints. Comput Methods Appl Mech Eng 347:782–805

    Article  MathSciNet  MATH  Google Scholar 

  15. Li Y, Wu Y, Huang Z (2014) An incremental Kriging method for sequential optimal experimental design. CMES Comput Model Eng Sci 97(4):323–357

    Google Scholar 

  16. Bouhlel MA, Martins JRRA (2019) Gradient-enhanced Kriging for high-dimensional problems. Eng Comput 35(1):157–173

    Article  Google Scholar 

  17. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  18. Kanazaki M, Takagi H, Makino Y (2013) Mixed-fidelity efficient global optimization applied to design of supersonic wing. Proc Eng 67:85–99

    Article  Google Scholar 

  19. Horowitz B et al (2010) A concurrent efficient global optimization algorithm applied to polymer injection strategies. J Pet Sci Eng 71(3–4):195–204

    Article  Google Scholar 

  20. Zhang Y, Han Z-H, Zhang K-S (2018) Variable-fidelity expected improvement method for efficient global optimization of expensive functions. Struct Multidiscipl Optim 58(4):1431–1451

    Article  MathSciNet  Google Scholar 

  21. Sasena MJ, Papalambros P, Goovaerts P (2002) Exploration of metamodeling sampling criteria for constrained global optimization. Eng Optim 34(3):263–278

    Article  Google Scholar 

  22. Li Y, Xuchang C (2016) A Kriging-based unconstrained global optimization algorithm. Int J Smart Sens Intell Syst 9(2):927–952

    Google Scholar 

  23. Li Y, Yizhong W, Shuting W (2015) Kriging-based sequence global optimization method for multiple sampling points. J Huazhong Univ Sci Technol Nat Sci Ed 43(12):7–11

    MATH  Google Scholar 

  24. Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited to parallelize optimization, in Computational Intelligence in Expensive Optimization Problems. Springer, Berlin, pp 131–162

    Google Scholar 

  25. Parr JM et al (2012) Infill sampling criteria for surrogate-based optimization with constraint handling. Eng Optim 44(10):1147–1166

    Article  Google Scholar 

  26. Dong H et al (2015) A kind of balance between exploitation and exploration on kriging for global optimization of expensive functions. J Mech Sci Technol 29(5):2121–2133

    Article  Google Scholar 

  27. Cai X et al (2017) A multi-point sampling method based on kriging for global optimization. Struct Multidiscip Optim 56(1):71–88

    Article  MathSciNet  Google Scholar 

  28. Yaohui L (2017) A Kriging-based global optimization method using multi-points infill search criterion. J Algorithms Comput Technol 11(4):366–377

    Article  MathSciNet  Google Scholar 

  29. Dong H et al (2018) Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems. Struct Multidiscip Optim 57(4):1553–1577

    Article  Google Scholar 

  30. Dong H et al (2018) Multi-surrogate-based Differential Evolution with multi-start exploration (MDEME) for computationally expensive optimization. Adv Eng Softw 123:62–76

    Article  Google Scholar 

  31. Gu J, Li GY, Dong Z (2012) Hybrid and adaptive meta-model-based global optimization. Eng Optim 44(1):87–104

    Article  Google Scholar 

  32. Martin JD (2009) Computational improvements to estimating kriging metamodel parameters. J Mech Des 131:084501

    Article  Google Scholar 

  33. Cressie N (1992) Statistics for spatial data. Terra Nova 4(5):613–617

    Article  Google Scholar 

  34. Martin JD, Simpson TW (2005) Use of Kriging models to approximate deterministic computer models. AIAA J 43(4):853–863

    Article  Google Scholar 

  35. Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained optimization of computer models. In: Flournoy N, Rosenberger WF, Wong WF (eds) New developments and applications in experimental design. Institute of Mathematical Statistics, Hayward, pp 11–25

    Chapter  Google Scholar 

  36. Schonlau M (1998) Computer experiments and global optimization. University of Waterloo, Waterloo

    Google Scholar 

  37. Ye KQ, Li W, Sudjianto A (2000) Algorithmic construction of optimal symmetric Latin hypercube designs. J Stat Plan Inference 90(1):145–159

    Article  MathSciNet  MATH  Google Scholar 

  38. Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Model Numer Optim 4(2):150–194

    MATH  Google Scholar 

Download references

Acknowledgements

Supports from the National Natural Science Foundation of China (Grant No. 51775472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. A Kriging-based multi-point sequential sampling optimization method for complex black-box problem. Evol. Intel. 15, 2341–2350 (2022). https://doi.org/10.1007/s12065-020-00352-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00352-5

Keywords

Navigation