An efficient nuclei segmentation method based on roulette wheel whale optimization and fuzzy clustering

  • Susheela VishnoiEmail author
  • Ajit Kumar Jain
  • Pradeep Kumar Sharma
Special Issue


Image segmentation is a technique in which an image is partitioned into different categories or regions that correspond to objects or parts of objects. The performance of segmentation methods is generally reduced for the hematoxylin and eosin stained histopathological images due to complex background and varying intensity values. Therefore, in this paper, the roulette wheel selection whale optimization based fuzzy clustering method is introduced for the nuclei segmentation of histopathological images. The proposed clustering method finds the optimal clusters using the objective function that reduces the sum of squared error or compactness. The performance of the proposed clustering method has been examined on the histopathological image dataset of Triple-Negative Breast Cancer patients and compared with k-means and fuzzy c-means in respect of F1 score and aggregated Jaccard index. The proposed method attains 0.6701 mean F1 scores and 0.7387 mean aggregated Jaccard index value, which are the best values among other methods. The experimental outcomes validate the efficiency of the introduced method over the other clustering-based segmentation methods.


Histopathological images Nuclei segmentation Whale optimization algorithm Metaheuristic methods Roulette wheel selection 



  1. 1.
    Pal R, Saraswat M (2018) Enhanced bag of features using alexnet and improved biogeography-based optimization for histopathological image analysis. In: Proceedings of eleventh international conference on contemporary computing, pp 1–6Google Scholar
  2. 2.
    Saraswat M, Arya K (2014) Automated microscopic image analysis for leukocytes identification: a survey. Micron 65:20–33CrossRefGoogle Scholar
  3. 3.
    Zhao M, Tang H, Guo J, Sun Y (2016) A data clustering algorithm using cuckoo search. In: Lecture Notes in Frontier Computing, Springer, pp 225–230Google Scholar
  4. 4.
    Szeliski R (2010) Computer vision: algorithms and applications. Springer, BerlinzbMATHGoogle Scholar
  5. 5.
    Veta M, Pluim JP, Van Diest PJ, Viergever MA (2014) Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 61:1400–1411CrossRefGoogle Scholar
  6. 6.
    Veta M, Huisman A, Viergever MA, van Diest PJ, Pluim JP (2011) Marker-controlled watershed segmentation of nuclei in h&e stained breast cancer biopsy images. In: Proceedings of IEEE biomedical imaging: from nano to macro, IEEE, pp 618–621Google Scholar
  7. 7.
    Xing F, Yang L (2016) Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev Biomed Eng 9:234–263CrossRefGoogle Scholar
  8. 8.
    Naylor P, Laé M, Reyal F, Walter T (2017) Nuclei segmentation in histopathology images using deep neural networks. In: Proceedings of IEEE international symposium on biomedical imaging, IEEE, pp 933–936Google Scholar
  9. 9.
    Hou L, Nguyen V, Kanevsky AB, Samaras D, Kurc TM, Zhao T, Gupta RR, Gao Y, Chen W, Foran D et al (2019) Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recogn 86:188–200CrossRefGoogle Scholar
  10. 10.
    Gopinath B, Gupt B (2010) Majority voting based classification of thyroid carcinoma. Procedia Comput Sci 2:265–271CrossRefGoogle Scholar
  11. 11.
    Sharma H, Arya K, Saraswat M (2014) Artificial bee colony algorithm for automatic leukocytes segmentation in histopathological images. In: Proceedings of the international conference on industrial and information systems, IEEE, pp 1–6Google Scholar
  12. 12.
    Vink J, Van Leeuwen M, Van Deurzen C, De Haan G (2013) Efficient nucleus detector in histopathology images. J Microsc 249:124–135CrossRefGoogle Scholar
  13. 13.
    Jung C, Kim C, Chae SW, Oh S (2010) Unsupervised segmentation of overlapped nuclei using bayesian classification. IEEE Trans Biomed Eng 57:2825–2832CrossRefGoogle Scholar
  14. 14.
    Wang P, Hu X, Li Y, Liu Q, Zhu X (2016) Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Sig Process 122:1–13CrossRefGoogle Scholar
  15. 15.
    Jorgensen AS, Rasmussen AM, Andersen NKM, Andersen SK, Emborg J, Roge R, Ostergaard LR (2017) Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides. Cytom Part A 91:785–793CrossRefGoogle Scholar
  16. 16.
    Zheng Y, Jiang Z, Zhang H, Xie F, Ma Y, Shi H, Zhao Y (2018) Histopathological whole slide image analysis using context-based cbir. IEEE Trans Med Imaging 1:1–17Google Scholar
  17. 17.
    Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31:651–666CrossRefGoogle Scholar
  18. 18.
    Baraldi A, Blonda P (1999) A survey of fuzzy clustering algorithms for pattern recognition. i. IEEE Trans Syst Man Cybernet Part B (Cybernet) 29:778–785CrossRefGoogle Scholar
  19. 19.
    Çetin M, Dokur Z, Ölmez T (2019) Fuzzy local information c-means algorithm for histopathological image segmentation. In: Scientific meeting on electrical-electronics & biomedical engineering and computer science, IEEE, pp 1–6Google Scholar
  20. 20.
    Tan XJ, Mustafa N, Mashor MY, Ab Rahman KS (2019) An improved initialization based histogram of k-mean clustering algorithm for hyperchromatic nucleus segmentation in breast carcinoma histopathological images. In: 10th international conference on robotics. vision, signal processing and power applications, Springer, pp 529–535Google Scholar
  21. 21.
    Hancer E, Karaboga D (2017) A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number. Swarm Evolut Comput 32:49–67CrossRefGoogle Scholar
  22. 22.
    Anari B, Torkestani JA, Rahmani A (2017) Automatic data clustering using continuous action-set learning automata and its application in segmentation of images. Appl Soft Comput 51:253–265CrossRefGoogle Scholar
  23. 23.
    Basavanhally A, Madabhushi A (2013) Em-based segmentation-driven color standardization of digitized histopathology. In: Medical imaging: digital pathology, international society for optics and photonicsGoogle Scholar
  24. 24.
    Koohababni NA, Jahanifar M, Gooya A, Rajpoot N (2018) Nuclei detection using mixture density networks. In: International workshop on machine learning in medical imaging, Springer, pp 241–248Google Scholar
  25. 25.
    Jothi JAA, Rajam VMA (2015) Segmentation of nuclei from breast histopathology images using pso-based otsu’s multilevel thresholding. In: Artificial intelligence and evolutionary algorithms in engineering systems, Springer, pp 835–843Google Scholar
  26. 26.
    Mittal H, Saraswat M (2019) An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering. Swarm Evolut Comput 45:15–32CrossRefGoogle Scholar
  27. 27.
    Abdolhoseini M, Kluge MG, Walker FR, Johnson SJ (2019) Segmentation of heavily clustered nuclei from histopathological images. Sci Rep 9(1):4551CrossRefGoogle Scholar
  28. 28.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  29. 29.
    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRefGoogle Scholar
  30. 30.
    Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518CrossRefGoogle Scholar
  31. 31.
    Pandey AC, Pal R, Kulhari A (2018) Unsupervised data classification using improved biogeography based optimization. Int J Syst Assur Eng Manag 9(4):821–829CrossRefGoogle Scholar
  32. 32.
    Srinivas M, Patnaik LM (1994) Genetic algorithms: a survey. Computer 27:17–26CrossRefGoogle Scholar
  33. 33.
    Gao S, Vairappan C, Wang Y, Cao Q, Tang Z (2014) Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl Math Comput 231:48–62MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483CrossRefGoogle Scholar
  35. 35.
    Yang XS (2009) Firefly algorithms for multimodal optimization. Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178CrossRefGoogle Scholar
  36. 36.
    Price KV (2013) Differential evolution. In: Handbook of Optimization, Springer, Berlin, pp 187–214Google Scholar
  37. 37.
    Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization, Springer, pp 65–74Google Scholar
  39. 39.
    Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRefGoogle Scholar
  40. 40.
    Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312CrossRefGoogle Scholar
  41. 41.
    Lipowski A, Lipowska D (2012) Roulette-wheel selection via stochastic acceptance. Physica A 391(6):2193–2196CrossRefGoogle Scholar
  42. 42.
    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRefGoogle Scholar
  43. 43.
    (2018) Multi-organ Nuclei Segmentation Challenge (MICCAI 2018). Accessed 19 July 2018
  44. 44.
    Mahmood F, Borders D, Chen R, McKay GN, Salimian KJ, Baras A, Durr NJ (2018) Deep adversarial training for multi-organ nuclei segmentation in histopathology images. arXiv preprint arXiv:181000236

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Comuter Science and EngineeringBanasthali VidyapithNiwaiIndia
  2. 2.Swami Keshvanand Institute of Technology, Management and GramothanJaipurIndia
  3. 3.Department of Computer ScienceBanasthali VidyapithNiwaiIndia

Personalised recommendations