A multi-analysis on privacy preservation of association rules using hybridized approach


Nowadays, extensively obtainable personal data has made Privacy-Preserving Data Mining (PPDM) issues a significant one. PPDM handles securing the privacy of sensitive knowledge or personal data without leaking the utility of the data. Several techniques have been introduced with the concern of privacy, yet there exist certain limitations in PPDM in achieving the feasible standards. Hence, this paper intends to develop a sanitization and restoration model by concerning objective functions like, Hiding Failure rate, Information Preservation rate, False Rules generation rate, Degree of Modification, Compression Ratio, tampering and Low Pass Filter for better preservation of privacy data. In sanitization and restoration, a key is generated optimally using Hybrid model named Genetic Algorithm with Crow Search Algorithm (GA-CSA). Moreover, the sensitive data is restored efficiently by the authorized user at the receiving end. Finally, the proposed GA-CSA approach is compared over conventional schemes such as Firefly (FF), Self-Adaptive FF Genetic Algorithm, Particle Swarm Optimization, and Differential Evolution approach and the enhanced outcomes are obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Giannotti F, Lakshmanan LVS, Monreale A, Pedreschi D, Wang H (2013) Privacy-preserving mining of association rules from outsourced transaction databases. IEEE Syst J 7(3):385–395

    Article  Google Scholar 

  2. 2.

    Fouad MR, Elbassioni K, Bertino E (2014) A supermodularity-based differential privacy preserving algorithm for data anonymization. IEEE Trans Knowl Data Eng 26(7):1591–1601

    Article  Google Scholar 

  3. 3.

    Li Y, Yang J, Ji W (2016) Local learning-based feature weighting with privacy preservation. Neurocomputing 174:1107–1115

    Article  Google Scholar 

  4. 4.

    Sui P, Li X (2017) A privacy-preserving approach for multimodal transaction data integrated analysis. Neurocomputing 253:56–64

    Article  Google Scholar 

  5. 5.

    Prakash M, Singaravel G (2015) An approach for prevention of privacy breach and information leakage in sensitive data mining. Comput Electr Eng 45:134–140

    Article  Google Scholar 

  6. 6.

    Bhat TP, Karthik C, Chandrasekaran K (2015) A privacy preserved data mining approach based on k-partite graph theory. Proced Comput Sci 54:422–430

    Article  Google Scholar 

  7. 7.

    Ferrag MA, Maglaras LA, Janicke H, Jiang J, Shu L (2018) A systematic review of data protection and privacy preservation schemes for smart grid communications. Sustain Cities Soc 38:806–835

    Article  Google Scholar 

  8. 8.

    Madhuri B, Aniruddha G, Rahul R (2013) Identification and classification of flood prone areas using AHP, GIS and GPS. Disaster Adv 6(11):120–131

    Google Scholar 

  9. 9.

    Kong Q, Lu R, Ma M, Bao H (2019) A privacy-preserving sensory data sharing scheme in Internet of Vehicles. Future Gener Comput Syst 92:644–655

    Article  Google Scholar 

  10. 10.

    Wei R, Tian H, Shen H (2018) Improving k-anonymity based privacy preservation for collaborative filtering. Comput Electr Eng 67:509–519

    Article  Google Scholar 

  11. 11.

    Diyanat A, Khonsari A, Shafiei H (2017) Preservation of temporal privacy in body sensor networks. J Netw Comput Appl 96:62–71

    Article  Google Scholar 

  12. 12.

    Romanou A (2018) The necessity of the implementation of Privacy by Design in sectors where data protection concerns arise. Comput Law Secur Rev 34(1):99–110

    Article  Google Scholar 

  13. 13.

    Sánchez D, Batet M (2017) Privacy-preserving data outsourcing in the cloud via semantic data splitting. Comput Commun 110:187–201

    Article  Google Scholar 

  14. 14.

    Liu C, Shang Z, Tang YY (2016) An image classification method that considers privacy-preservation. Neurocomputing 208:80–98

    Article  Google Scholar 

  15. 15.

    Jayaraman PP, Yang X, Yavari A, Georgakopoulos D, Yi X (2017) Privacy preserving Internet of Things: from privacy techniques to a blueprint architecture and efficient implementation. Fut Gener Comput Syst 76:540–549

    Article  Google Scholar 

  16. 16.

    Waqar A, Raza A, Abbas H, Khan MK (2013) A framework for preservation of cloud users’ data privacy using dynamic reconstruction of metadata. J Netw Comput Appl 36(1):235–248

    Article  Google Scholar 

  17. 17.

    Zhang K, Liang X, Baura M, Lu R, Shen XS (2014) PHDA: A priority based health data aggregation with privacy preservation for cloud assisted WBANs. Inf Sci 284:130–141

    MathSciNet  Article  Google Scholar 

  18. 18.

    Wang N, Zhao X (2017) 2D vector map data hiding with directional relations preservation between points. AEU Int J Electron Commun 71:118–124

    Article  Google Scholar 

  19. 19.

    Luo H, Yu FX, Chen H, Huang ZL, Li H, Wang PH (2011) Reversible data hiding based on block median preservation. Inf Sci 181(2):308–328

    Article  Google Scholar 

  20. 20.

    Upadhyay S, Sharma C, Sharma P, Bharadwaj P, Seeja KR (2018) Privacy preserving data mining with 3-D rotation transformation. J King Saud Univ Comput Inf Sci 30(4):524–530

    Google Scholar 

  21. 21.

    KumarTripathi K (2016) Discrimination prevention with classification and privacy preservation in data mining. Proced Comput Sci 79:244–253

    Article  Google Scholar 

  22. 22.

    Verykios VS, Elmagarmid AK, Bertino E, Saygin Y, Dasseni E (2004) Association rule hiding. IEEE Trans Knowl Data Eng 16(4):434–447

    Article  Google Scholar 

  23. 23.

    Cheng P, Lee I, Lin C-W, Pan J-S (2016) Association rule hiding based on evolutionary multi-objective optimization. Intell Data Anal 20(3):495–514

    Article  Google Scholar 

  24. 24.

    Cheng P, Lee I, Pan JS, Lin CW, Roddick JF (2015) Hide association rules with fewer side effects. IEICE Trans Inf Syst 98(10):1788–1798

    Article  Google Scholar 

  25. 25.

    Menaga D, Revathi S (2018) Least lion optimisation algorithm (LLOA) based secret key generation for privacy preserving association rule hiding. IET Inf Secur 12(4):332–340

    Article  Google Scholar 

  26. 26.

    Verykios VS, Pontikakis ED, Theodoridis Y, Chang L (2007) Efficient algorithms for distortion and blocking techniques in association rule hiding. Distrib Parallel Databases 22(1):85–104

    Article  Google Scholar 

  27. 27.

    Sun X, Yu PS (2005) A border-based approach for hiding sensitive frequent itemsets. In: Proceedings of the Fifth IEEE international conference on data mining (ICDM), pp 426–433

  28. 28.

    Saygin Y, Verykios VS, Clifton C (2001) Using unknowns to prevent discovery of association rules. ACM SIGMOD Record 30(4):45–54

    Article  Google Scholar 

  29. 29.

    Peng M, Chen M, Zhou H, Wan Q, Chen L (2018) Hybrid PAPR reduction scheme with Huffman coding and DFT-spread technique for direct-detection optical OFDM systems. Opt Fiber Technol 40:1–7

    Article  Google Scholar 

  30. 30.

    Qin C, Ma X, Hua T, Zhao J, Yu H, Zhang J (2017) Golay sequences coded coherent optical OFDM for long-haul transmission. Opt Commun 399:52–55

    Article  Google Scholar 

  31. 31.

    Kondo Y, Numada M, Koshimizu H, Kamiya K, Yoshid I (2016) The filtering method to calculate the transmission characteristics of the low-pass filters using actual measurement data. Precis Eng 44:55–61

    Article  Google Scholar 

  32. 32.

    Vrionis TD, Koutiva XI, Vovos NA (2013) A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators. IEEE Trans Power Syst 29(3):1325–1334

    Article  Google Scholar 

  33. 33.

    Fernández JR, López-Campos JA, Segade A, Vilán JA (2018) A genetic algorithm for the characterization of hyperelastic materials. Appl Math Comput 329:239–250

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  35. 35.

    Navale GS, Mali SN. Self–adaptive optimization for improved data sanitization and restoration. Int J Uncertainty Fuzziness Knowl-Based Syst (accepted)

  36. 36.

    Navale GS, Mali SN (2018) Lossless and robust privacy preservation of association rules in data sanitization. Clust Comput 22(1):1415–1428

    Google Scholar 

  37. 37.

    Zhang J, Xia P (2017) An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models. J Sound Vib 389:153–167

    Article  Google Scholar 

  38. 38.

    Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensemble of differential evolution variants. Inf Sci 423:172–186

    MathSciNet  Article  Google Scholar 

  39. 39.

    Lu L, Chen S (2013) A compress slide attack on the full GOST block cipher. Inf Process Lett 113(17):634–639

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Lin D, Jie G (2012) Related key chosen IV attacks on Decim v2 and Decim-128. Math Comput Model 55:123–133

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Zhang LY, Liu Y, Wang C, Zhou J, Zhang Y, Chen G (2018) Improved known-plaintext attack to permutation-only multimedia ciphers. Inf Sci 430:228–239

    MathSciNet  Article  Google Scholar 

  42. 42.

    Wu J, Liu W, Liu Z, Liu S (2015) Correlated-imaging-based chosen plaintext attack on general cryptosystems composed of linear canonical transforms and phase encodings. Opt Commun 338:164–167

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Geeta S. Navale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navale, G.S., Mali, S.N. A multi-analysis on privacy preservation of association rules using hybridized approach. Evol. Intel. (2019). https://doi.org/10.1007/s12065-019-00277-8

Download citation


  • Data mining
  • Privacy preservation
  • Sanitization
  • Restoration
  • Genetic algorithm, Crow search algorithm