Skip to main content
Log in

Evolution-in-materio: evolving computation in materials

  • Review Article
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Evolution-in-materio (EIM) is the manipulation of a physical system by computer controlled evolution (CCE). It takes the position that to obtain useful functions from a physical system one needs to apply highly specific physical signals and place the system in a particular physical state. It argues that CCE is an effective methodology for doing this. One of the potential advantages of this is that artificial evolution can potentially exploit physical effects that are either too complex to understand or hitherto unknown. EIM is most commonly used as a methodology for implementing computation in physical systems. The method is a hybrid of analogue and classical computation in that it uses classical computers to program physical systems or analogue devices. Thus far EIM has only been attempted in a rather limited set of physical and chemical systems. This review paper examines past work related to EIM and discusses historical underpinnings behind such work. It describes latest developments, gives an analysis of the advantages and disadvantages of such work and the challenges that still remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adamatzky A (2001) Computing in Nonlinear Media and Automata Collectives. Institute of Physics Publishing: Bristol

  2. Adamatzky A (2009) Reaction-diffusion computing. In: Meyers RA (ed.) Encyclopedia of complexity and systems science, pp. 7548–7565. Springer: New York

  3. Adamatzky A (2010) Physarum machines: computers from slime mould. World Scientific Publishing Company, Singapore

    Google Scholar 

  4. Adamatzky A, Costello BDL, Asai T (2005) Reaction-diffusion computers. Elsevier, Amsterdam

    Google Scholar 

  5. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(11):1021–1024

    Article  Google Scholar 

  6. Amos M (2005) Theoretical and experimental DNA computation. Springer, New Jersey

    MATH  Google Scholar 

  7. Ashby WR (1960) Design for a brain: the origin of adaptive behavior. Chapman & Hall, London

    Book  Google Scholar 

  8. Bechmann M, Sebald A, Stepney S (2010) From binary to continuous gates—and back again. In: Proceedings of the 9th international conference on evolvable systems: from biology to hardware, pp 335–347

  9. Beer S (1962) A progress note on research into a cybernetic analogue of fabric. In: How many grapes went into the wine? Stafford beer on the art and science of holistic management, Harnden R, Allenna L (eds), Wiley: New Jersey reprinted in 1994

  10. Beer S (1962) Towards the automatic factory. In: Transactions of the University of Illinois Symposium on Self-Organization, 1961, pp 25–89

  11. Bhalla N, Bentley PJ, Vize PD, Jacob C (2012) Programming and evolving physical self-assembling systems in three dimensions. Nat Comput 11(3):475–498

    Article  MathSciNet  Google Scholar 

  12. Bird J, Layzell P (2002) The evolved radio and its implications for modelling the evolution of novel sensors. In: Proceedings of Congress on Evolutionary Computation, pp. 1836–1841

  13. Bissell C (2004) A great disappearing act: the electronic analogue computer. In: IEEE Conference on the History of Electronics, June 28–30. Bletchey, UK

  14. Bongard J (2013) Evolutionary robotics. Commun ACM 56(8):74–85

    Article  Google Scholar 

  15. Broersma H, Gomez F, Miller JF, Petty M, Tufte G (2012) Nascence project: nanoscale engineering for novel computation using evolution. Int J Unconv Comput 8(4):313–317

    Google Scholar 

  16. Bull L, Budd A, Stone C, Uroukov I, de Lacy Costello B, Adamatzky A (2008) Towards unconventional computing through simulated evolution: ccontrol of nonlinear media by a learning classifier system. Artif Life 14:203–222

    Article  Google Scholar 

  17. Burks AW (1970) Von neumann’s self-reproducing automata. In: Burks AW (ed), Essays on cellular automata, pp. 3–64. University of Illinois Press: Champaign

  18. Bush V (1931) The differential analyzer: a new machine for solving differential equations. J Frankl Inst 212:447–488

    Article  Google Scholar 

  19. Cariani P (1993) To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Syst Res 3:19–33

    Google Scholar 

  20. Cariani P (2009) The homeostat as embodiment of adaptive control. Int J Gen Syst 38(2):139–154

    Article  MATH  Google Scholar 

  21. Conrad M (1988) The price of programmability. In: Herken R (ed.) The universal turing machine a half-century survey, pp. 285–307. Oxford University Press: Oxford

  22. Conrad M (1999) Molecular and evolutionary computation: the tug of war between context freedom and context sensitivity. BioSystems 52:99–110

    Article  Google Scholar 

  23. Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  24. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond A 400:97–117

    Article  MATH  MathSciNet  Google Scholar 

  25. Eiben AE, Kernbach S, Haasdijk E (2012) Embodied artificial evolution—artificial evolutionary systems in the 21st century. Evol Intell 5(4):261–272

    Article  Google Scholar 

  26. Funes P, Pollack J (1997) Computer evolution of buildable objects. In: Husbands P, Harvey I (eds), Fourth European Conference on Artificial Life, MIT Press: Cambridge, pp 358–367.

  27. Funes P, Pollack J (1998) Evolutionary body building: adaptive physical designs for robots. Artif Life 4(4):337–357

    Article  Google Scholar 

  28. Graça DS (2004) Some recent developments on Shannon’s general purpose analog computer. Math Log Q 50(4–5):473–485

    Article  MATH  Google Scholar 

  29. Graça DS, Costa JF (2003) Analog computers and recursive functions over the reals. J Complex 19(5):644–664

    Article  MATH  Google Scholar 

  30. Greenwood G, Tyrrell AM (2007) Introduction to evolvable hardware. IEEE Press, New York

    Google Scholar 

  31. Harding S (2005) Evolution in materio Ph.D. thesis. University of York

  32. Harding S, Miller JF (2004) Evolution in materio: a tone discriminator in liquid crystal. In: In Proceedings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol. 2, pp. 1800–1807

  33. Harding S, Miller JF (2005) Evolution in materio : a real time robot controller in liquid crystal. In: Proceedings of NASA/DoD Conference on Evolvable Hardware, pp. 229–238

  34. Harding S, Miller JF (2005) Evolution in materio: investigating the stability of robot controllers evolved in liquid crystal. In: Moreno JM, Madrenas J, Cosp J (eds), Evolvable systems: from biology to hardware, 6th International Conference, Proceedings, Lecture Notes in Computer Science, Springer, vol 3637, pp 155–164

  35. Harding S, Miller JF (2009) Evolution in materio. In: Meyers RA (ed), Encyclopedia of complexity and systems science, pp 3220–3233. Springer: New Jersey

  36. Harding SL, Miller JF (2007) Evolution in materio: evolving logic gates in liquid crystal. Int J Unconv Comput 3(4):243–257

    Google Scholar 

  37. Harding SL, Miller JF, Rietman EA (2008) Evolution in materio: exploiting the physics of materials for computation. Int J Unconv Comput 4(2):155–194

    Google Scholar 

  38. Higuchi T, Liu Y, Yao X (2006) Evolvable hardware. Springer, Nee Jersey

    Book  MATH  Google Scholar 

  39. Holland JH (1962) Outline for a logical theory of adaptive systems. J ACM 9(3):297–314

    Article  MATH  MathSciNet  Google Scholar 

  40. Hornby G, Lipson H, Pollack JB (2001) Evolution of generative design systems for modular physical robots. In: Proceedings of the 2001 IEEE International Conference on robotics and automation, pp 4146–4151

  41. Huelsbergen L, Rietman EA, Slous R (1999) Evolution of astable multivibrators in silico. IEEE Trans Evol Comput 3(3): 197–204

    Google Scholar 

  42. Husbands P, Holland O (2008) Mechanical mind in history, chap. The ratio club: a hub of British cybernetics, pp. 91–148. MIT Press: Cambridge

  43. Langeheine J, Becker J, Folling S, Meier K, Schemmel J (2001) A CMOS FPTA chip for intrinsic hardware evolution of analog electronic circuits. In: Evolvable hardware, 2001. Proceedings. The Third NASA/DoD Workshop on, pp 172–175

  44. Layzell P (1998) A new research tool for intrinsic hardware evolution. Proc Sec Int Conf Evol Syst: Biology Hardw, LNCS 1478:47–56

    Google Scholar 

  45. Linden DS, Altshuler EE (1999) Evolving wire antennas using genetic algorithms: a review. In: 1st NASA / DoD Workshop on evolvable hardwaree, pp. 225–232. IEEE Comput Soc

  46. Linden DS, Altshuler EE (2001) A system for evolving antennas in-situ. In: 3rd NASA / DoD Workshop on evolvable hardware, pp 249–255. IEEE Comput Soc

  47. Lipson H, Pollack JB (2000) Automatic design and manufacture of robotic lifeforms. Nature 406:974–978

    Article  Google Scholar 

  48. Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047–1054

    Article  Google Scholar 

  49. Lohn JD, Hornby GS, Linden DS (2008) Human-competitive evolved antennas. Artif Intell Eng Des, Anal Manuf 22(3):235–247

    Article  Google Scholar 

  50. Maclennan B (1991) Field computation: a theoretical framework for massively parallel analog computation. Parts i–iv. Technical Report, CS-90-100, Department of Computer Science, University of Tennessee

  51. Maclennan B (2007) A review of analog computing. Technical Report CS-07-601, Department of Electrical Engineering and Computer Science, University of Tennessee

  52. McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    Article  MATH  MathSciNet  Google Scholar 

  53. Miller JF, Downing K (2002) Evolution in materio: looking beyond the silicon box. Proceedings of NASA/DoD Evolvable Hardware Workshop pp 167–176

  54. Miller JF, Job D, Vassilev VK (2000) Principles in the evolutionary design of digital circuits—Part I. Genet Program Evol Mach 1(1):8–35

    Google Scholar 

  55. Miller JF, Thomson P (2000) Cartesian genetic programming. In: Poli R, WB et al. (eds.) Proceedings of EuroGP 2000, LNCS, vol 1802, pp 121–132. Springer

  56. Mills JW (1995) The continuous retina: image processing with a single sensor artificial neural field network. Technical Report TR443, Department of Computer Science, University of Indiana

  57. Mills JW (1995) Polymer processors. Technical Report TR580, Department of Computer Science, University of Indiana

  58. Mills JW (1995) Programmable VLSI extended analog computer for cyclotron beam control. Technical Report TR441, Department of Computer Science, University of Indiana

  59. Mills JW, Beavers MG, Daffinger CA (1990) Lukasiewicz logic arrays. In: Proceedings of 20th International Symposium on multiple-valued logic, pp 4–10

  60. Mills JW, Parker M, Himebaugh B, Shue C, Kopecky B, Weilemann C (2006) “Empty space” computes: the evolution of an unconventional supercomputer. In: Proceedings of the 3rd conference on computing frontiers, pp. 115–126,ACM

  61. von Neumann J (1945) First Draft of a Report on the EDVAC. Godfrey MD (eds) 1992. Technical report, Moore School of Electrical Engineering University of Pennsylvania

  62. Oltean M (2006) Switchable glass: a possible medium for evolvable hardware. In: Adaptive hardware and systems, NASA/ESA Conference on, pp. 81–87. IEEE Comput Soc

  63. Pask G (1958) Physical analogues to the growth of a concept. In: Mechanisation of thought processes, no. 10 in National Physical Laboratory Symposium, pp. 877–922. Her Majesty’s Stationery Office, London, UK

  64. Pask G, Curran S (1982) Micro man: computers and the evolution of consciousness, chapter 8. Maverick Machines, pp 133–147, Macmillan

  65. Paul C, Valero-Cuevas FJ, Lipson H (2006) Design and control of tensegrity robots for locomotion. IEEE Trans Robotics 22(5):944–957

    Article  Google Scholar 

  66. Pias C. (ed.) (2003) Cybernetics: The Macy-conferences 1946–1953. Diaphanes, Zürich, Berlin

  67. Pickering A (2002) Cybernetics and the mangle: ashby, beer and pask. Soc Stud Sci 32(3):413–437

    Article  Google Scholar 

  68. Pickering A (2010) The Cybernetic brain: scetches of another future. The University of Chicago Press, Chicago

    Book  Google Scholar 

  69. Rechenberg I (1971) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Dissertation. Friedrich Frommann Verlag, 1973

  70. Rieffel J, Sayles D (2010) EvoFab: a fully embodied evolutionary fabricator. In: Proceedings of the 9th international conference on Evolvable systems: from biology to hardware. Springer: New Jersey, pp 372–380

  71. Roselló-Merino M, Bechmann M, Sebald A, Stepney S (2010) Classical computing in nuclear magnetic resonance. Int J Unconv Comput 6(3–4):163–195

    Google Scholar 

  72. Rubel L (1993) The extended analog computer. Adv Appl Math 14:39–50

    Article  MATH  MathSciNet  Google Scholar 

  73. Rubin-Pitel S, Cho CMH, Chen W, Zhao H (2006) Bioprocessing for value-added products from renewable resources: new technologies and applications, chap. Directed evolution tools in bioproduct and bioprocess development, Elsevier: Cambridge. 49–72

  74. Schmidüber J (2006) Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connect Sci 18(2):173–187

    Article  Google Scholar 

  75. Schwefel HP (1974) Numerische optimierung von computer-modellen. Dissertation. Birkhäuser, Basel, published in 1977

  76. Sekanina L (2004) Evolvable components: from theory to hardware implementations. Natural computing. Springer, New Jersey

    Book  Google Scholar 

  77. Shannon CE (1941) Mathematical theory of the differential analyzer. J Math Phys MIT 20:337–354

    MATH  MathSciNet  Google Scholar 

  78. Sims K (1994) Evolving virtual creatures. In: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, SIGGRAPH ’94, pp 15–22. ACM

  79. Stewart RM (1969) Electrochemically active field-trainable pattern recognition systems. IEEE Trans Syst Sci Cybern 5(3):230–237

    Article  Google Scholar 

  80. Stoica A, Arslan T, Keymeulen D, Duong V, Guo X, Zebulum R, Ferguson I, Daud T (2004) Evolutionary recovery of electronic circuits from radiation induced faults. In: Evolutionary computation. CEC2004. Congress on, vol 2, pp 1786–1793

  81. Stoica A, Keymeulen D, Zebulum R, Thakoor A, Daud T, Klimeck Y, Tawel R, Duong V (2000) Evolution of analog circuits on field programmable transistor arrays. In: Evolvable hardware. Proceedings. The Second NASA/DoD Workshop on, pp 99–108

  82. Stoica A, Zebulum RS, Keymeulen D (2000) Mixtrinsic evolution. In: Proceedings of the Third International Conference on evolvable systems: from biology to hardware (ICES2000), Lecture notes in computer science, Springer, 1801:208–217

  83. Tangen U, Wagler PF, Chemnitz S, Goranovic G, Maeke T, McCaskill JS (2006) An electronically controlled microfluidic approach towards artificial cells. Complexus 3:48–57

    Article  Google Scholar 

  84. Theis M, Gazzola G, Forlin M, Poli I, Hanczyc MM, Bedau MA (2006) Optimal formulation of complex chemical systems with a genetic algorithm. In: Online Proceedings of the European Conference on complex systems (ECCS ’06), pp. 193

  85. Thompson A (1997) An evolved circuit, intrinsic in silicon, entwined with physics. In: T. Higuchi, M. Iwata, L. Weixin (eds.) Proceedings of 1st International Conferences on Evolvable Systems (ICES’96), LNCS. Springer, 1259:390–405

  86. Thompson A (1998) Hardware evolution: automatic design of electronic circuits in reconfigurable hardware by artificial evolution. Distinguished dissertation series. Springer: New Jersey

  87. Thompson A (1998) On the automatic design of robust electronics through artificial evolution. In: Sipper M, Mange D, érez-Uribe AP (eds), Evolvable systems: from biology to hardware, Springer, New York, 1478: 13–24

  88. Thompson A, Harvey I, Husbands P (1996) Unconstrained evolution and hard consequences. In: Sanchez E, Tomassini M (eds), Towards evolvable hardware: the evolutionary engineering approach. LNCS, Springer: New York, 1062: 136–165

  89. Thompson A, Layzell P (1999) Analysis of unconventional evolved electronics. CommunACM 42(4):71–79

    Google Scholar 

  90. Thompson A, Layzell P (2000) Evolution of robustness in an electronics design. In: Miller J, Thompson A, Thomson P, Fogarty T(eds), Proceedings of 3rd International Conference on evolvable systems (ICES2000): from biology to hardware, LNCS, 1801: 218–228

  91. Thompson A, Layzell P, Zebulum RS (1999) Explorations in design space: unconventional electronics design through artificial evolution. IEEE Trans Evol Comput 3(3):167–196

    Article  Google Scholar 

  92. Toffoli T (2005) Nothing makes sense in computing except in the light of evolution. Int J Unconv Comput 1(1):3–29

    Google Scholar 

  93. Toth R, Stone C, Adamatzky A, de Lacy Costello B, Bull L (2008) Dynamic control and information processing in the Belousov-Zhabotinsky reaction using a coevolutionary algorithm. J Chem Phys 129:184,708

    Article  Google Scholar 

  94. Toth R, Stone C, de Lacy Costello B, Adamatzky A, Bull L (2011) Simple collision-based chemical logic gates with adaptive computing. Chapetr 11, pp 162–175. Theoretical and technological advancements in nanotechnology and molecular computation: interdisciplinary gains. IGI Global

  95. Trefzer M, Langeheine J, Meier K, Schemmel J (2005) Operational amplifiers: an example for multi-objective optimization on an analog evolvable hardware platform. In: Moreno J, Madrenas J, Cosp J (eds), Evolvable systems: from biology to hardware, it Lecture notes in computer science, Springer: New York, 3637, pp 86–97

  96. Trefzer M, Langeheine J, Schemmel J, Meier K (2004) New genetic operators to facilitate understanding of evolved transistor circuits. In: Evolvable hardware, 2004. Proceedings. 2004 NASA/DoD Conference on, pp 217–224

  97. Turing AM (1936) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc 42(2):230–265

    MathSciNet  Google Scholar 

  98. Verduzco-Luque CE, Alp B, Stephens G, Markx G (2003) Construction of biofilms with defined internal architecture using dielectrophoresis and flocculation. Biotechnol Bioeng 83(1):39–44

    Article  Google Scholar 

  99. Walter WG (1953) The Living Brain. Gerald Duckworth & Co. LTD, London

    Google Scholar 

  100. Weiss R, Basu S, Hooshangi S, Kalmbach A, Karig D, Mehreja R, Netravali I (2003) Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat Comput 2(1):47–84

    Article  Google Scholar 

  101. Wiener N (1948) Cybernetics: or control and communication in the animal and the machine. MIT Press, Cambridge

    Google Scholar 

  102. Yoshihito A (1994) Information processing using intelligent materials—information-processing architectures for material processors. Intell Mater Syst Str 5:418–423

    Article  Google Scholar 

  103. Zauner KP (2004) From prescriptive programming of solid-state devices to orchestrated self-organisation of informed matter. In: Banâtre JP, Fradet P, Giavitto JL, Michel O (eds), Unconventional programming paradigms: International Workshop UPP 2004, Springer, 3566, pp 47–55

  104. Zebulum R, Pacheco M, Vellasco M (2002) Evolutionary electronics—automatic design of electronic circuits and systems by genetic algorithms. The CRC Press International Series on Computational Intelligence

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.F., Harding, S.L. & Tufte, G. Evolution-in-materio: evolving computation in materials. Evol. Intel. 7, 49–67 (2014). https://doi.org/10.1007/s12065-014-0106-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-014-0106-6

Keywords

Navigation