Adams CC (2000) The knots book: an elementary introduction to the mathematical theory of knots. W. H. Freeman, New York
Google Scholar
Akutsu Y, Wadati M (1987) Knot invariants and critical statistical systems. J Phys Soc Jpn 56:839–842
Article
Google Scholar
Alberts B (2003) DNA replication and recombination. Nature 421:431–435
PubMed
Article
CAS
Google Scholar
Andersen JE, Penner RC, Reidys CM, Waterman MS (2013) Topologically classification and enumeration of RNA structures by genus. J Math Bio 67(5):1261–1278
CAS
Article
Google Scholar
Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230
CAS
PubMed
Article
Google Scholar
Bates A, Maxwell A (2005) DNA topology, 2nd edn. Oxford University Press, Oxford
Google Scholar
Begun A, Liubimov S, Molochkov A, Niemi AJ (2021) On topology and knotted entanglements in protein folding. PLoS ONE 16(1):1–17
Article
CAS
Google Scholar
Bian Q, Belmont AS (2012) Revisiting higher order large-scale chromatin organization. Curr Opin Cell Biol 24(3):359–366
CAS
PubMed
PubMed Central
Article
Google Scholar
Birmarn JS (1974) Braids, links, and mapping class groups. Princeton University Press, Princeton
Google Scholar
Boi L (2005) Topological knots models in physics and biology. In: Boi L (ed) Geometries of nature, living systems and human cognition. New interactions of mathematics with natural sciences and humanities. World Scientific, Singapore, pp 203–278
Boi L (2006) Mathematical knot theory. In: Françoise J-P, Naber G, Sun TS (eds) Encyclopedia of mathematical physics, vol 3. Elsevier, Oxford, pp 399–406
Chapter
Google Scholar
Boi L (2007a) Geometrical topological modeling of supercoiling in supramolecular structures. Biophys Rev Lett 2(3):1–13
Google Scholar
Boi L (2007b) Modelling supercoiling in biological structures. In: Di Gesù V, Lo Bosco G, Maccarone MC (eds) Modelling and simulation in science. World Scientific, Singapore, pp 187–200
Boi L (2007c) Sur quelques propriétés géométriques globales des systèmes vivants. Bull D’histoire D’épistémol Sci Vie 14:71–113
Article
Google Scholar
Boi L (2009) Epigenetic phenomena, chromatin dynamics, and gene expression. New theoretical approaches in the study of living systems. Biol Forum 101(3):405–442
Google Scholar
Boi L (2011a) When topology meets biology ‘for life’. Remarks on the way in which topological form modulates biological function. In: New trends in geometry and its role in the natural and life sciences. Imperial College Press, London, pp 241–303
Boi L (2011b) Plasticity and complexity in biology: topological organization, regulatory protein networks and mechanism of gene expression. In: Terzis G, Arp R (eds) Information and living systems. Philosophical and Scientific Perspectives. The MIT Press, Cambridge, pp 205–250
Boi L (2017) The interlacing of upward and downward causation in complex living systems: on interactions, self-organization, emergence, and wholeness. In: Paolini Paoletti M, Orilia F (eds) Philosophical and scientific perspectives on Downward causation. Routledge, London, pp 180–203
Boi L (2021a) Geometrical modeling of DNA and the structural complexity of the chromosome. J Biophys (forthcoming)
Boi L (2021b) A topological and dynamical approach to the study of complex living systems. In: Albeverio S, Mastrogiacomo E (eds) Complexity and emergence. Springer, Heidelberg, pp 57–104
Google Scholar
Boi L (2021c) Knots, diagrams, and kid’s shoelaces: on spaces and theirs forms. In: Boi L, Lobo C (eds) When form becomes substance. Power of gesture, diagrammatical intuition and phenomenology of space. Birkhäuser, Basel, pp 137–208
Boles CT, White JH, Cozzarelli NR (1990) Structure of plectonemically supercoiled DNA. J Mol Biol 213(4):931–951
CAS
PubMed
Article
Google Scholar
Bon M, Vernizzi G, Orland H, Zee A (2008) Topological classification of RNA structures. J Mol Biol 379:900–911
CAS
PubMed
Article
Google Scholar
Brunello L, Levens D, Gupta A, Kouzine F (2012) The importance of being supercoiled: How DNA mechanic regulate dynamic processes. Biophys Acta (BBA) Gene Regul Mech 1819(7):632–638
Article
CAS
Google Scholar
Buck D (2009) DNA topology. Proc Symp Appl Math 66:1–33
Article
Google Scholar
Buck D, Valencia D (2011) Characterization of knots and links arising from site-specific recombination of twist knots. J Phys A 44(4):1–36
Article
CAS
Google Scholar
Burde G, Zieschang H (2003) Knots, 2nd edn. de Gruyter, Berlin
Google Scholar
Carbone A, Gromov M (2001) Mathematical slices of molecular biology, Gazette des Mathématiciens. Soc Math France 8:11–80
Google Scholar
Cavalli G, Heard E (2019) Advances in epigenetics link genetics to environment and disease. Nature 571:39–68
Article
CAS
Google Scholar
Conway JH (1970) An enumeration of knots and links, and some of their algebraic properties J. In: Leech (ed) Computational problems in abstract algebra. Pergamon Press, Oxford, pp 329–358
Google Scholar
Cozzarelli NR, Spengler SJ, Stasiak A (1985) The stereostructure of knots and catenanes produced by phase λ integrative recombination: implications for mechanism and DNA structure. Cell 42:325–334
PubMed
Article
Google Scholar
Cozzarelli NR (1992) Evolution of DNA topology: implications for its biological role. In: New scientific applications of geometry and topology, PSAM, vol 45, Amer. Math. Soc
Cremer T et al (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell 96:555–567
CAS
PubMed
Article
Google Scholar
Culler M, Gordon MCA, Leucke J, Shalen PB (1987) Dehn surgery on knots. Ann Math 125(2):237–300
Article
Google Scholar
Danchin A (1978) Ordre et dynamique du vivant. Éditions du Seuil, Paris
Google Scholar
Danchin E, Charmantier A (2011) Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nat Rev Gen 12:475–486
CAS
Article
Google Scholar
Darcy IK, Levene SD, Scharein RG (2014) Introduction to DNA topology. In: Jonoska N, Saito M (eds) Discrete and topological models in molecular biology. Springer, Heidelberg, pp 327–345
Chapter
Google Scholar
Dehn M (1910) Über die topologie des dreidimensionalen raumes. Math Ann 69(1):137–168
Article
Google Scholar
Dixon JR, Gorkin DV, Ren B (2016) Chromatin dynamics: the unit of chromosome organization. Mol Cell 62(5):668–680
CAS
PubMed
PubMed Central
Article
Google Scholar
Douglas J (1931) Solution of the problem of Plateau. Trans Am Math Soc 33(1):263–321
Article
Google Scholar
Durickovic B, Goriely A, Maddocks JH (2013) Twist and stretch of helices explained via the Kirchhoff-Love rod model of elastic filaments. Phys Rev Lett 111:108103–108105
Article
CAS
Google Scholar
Dyson F (1985) Origins of life. Cambridge University Press, Cambridge
Google Scholar
Elhamdadi M, Hajij M, Istvan K (2020) Framed knots. Math Intell 42:7–22
Article
Google Scholar
Ernst C, Sumners DW (1990) A calculus for rational tangles: applications to DNA recombination. Math Proc Cambr Math Soc 108(3):489–515
Article
Google Scholar
Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421:448–453
PubMed
Article
CAS
Google Scholar
Flapan E, Grevet J, Li Q, Sun CD, Wong H (2014) Knotted and linked products of recombination on T(2, n)#T(2, m) substrates. J Korean Math Soc 51(4):817–836
Article
Google Scholar
Flapan E, He A, Wong A (2019) Topological description of protein folding. Proc Natl Acad Sci USA 116(19):9360–9369
CAS
PubMed
PubMed Central
Article
Google Scholar
Forterre P, Gribaldo S, Gadelle D, Serre M-C (2007) Origins and evolution of DNA topoisomerases. Biochimie 89(4):427–446
CAS
PubMed
Article
Google Scholar
Fuller FB (1978) Decomposition of the linking number of a closed ribbon: a problem from molecular biology. Proc Natl Acad Sci USA 75(8):3557–3561
CAS
PubMed
PubMed Central
Article
Google Scholar
Furlan-Margaril M, Recillas-Targa F (2011) Chromatin remodeling and epigenetic regulation during development. In: Chimal-Monroy J (ed) Topics in animals and plant development: from cell differentiation to morphogenesis, pp 221–247
Goldman JR, Kauffman LH (1997) Rational tangles. Adv Appl Math 18(3):300–332
Article
Google Scholar
Goodwin B, Webster G (1996) Form and transformation: generative and relational principles in biology. Cambridge University Press, Cambridge
Google Scholar
Gordon CM (2006) Some aspects of classical knot theory. In: Hausmann JC (ed) Knot theory, lecture notes in mathematics, vol 685. Springer, Heidelberg, Berlin, pp 1–60
Google Scholar
Gromov M (2011) Crystals, proteins, stability and isoperimetry. Bull Am Math Soc (NS) 48(2):229–257
Article
Google Scholar
Hinde E, Cardarelli F, Digman MA, Gratton E (2012) Changes in chromatin compaction during the cell cycles revealed by micrometer-scale measurement of molecular flow in the nucleus. Biophys J 102(3):691–697
CAS
PubMed
PubMed Central
Article
Google Scholar
Hirano T (2016) Condensin-based chromosome organization from bacteria to vertebrates. Cell 164(5):847–857
CAS
PubMed
Article
Google Scholar
Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170
CAS
PubMed
Article
Google Scholar
Huang FW, Reidys CM (2015) Shapes of topological RNA structures. Math Biosci 270:57–65
CAS
PubMed
Article
Google Scholar
Huang FW, Reidys CM (2016) Topological language for RNA. Math Biosci 282:109–120
CAS
PubMed
Article
Google Scholar
Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254
CAS
PubMed
Article
Google Scholar
Jones VFR (1985) A polynomial invariant for knots via von Neumann algebras. Bull Am Math Soc 12:103–111
Article
Google Scholar
Jost J (2019) Biologie und mathematik. Springer, Berlin, Heidelberg
Book
Google Scholar
Jost D, Carrivain P, Cavalli G, Vaillant C (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42(15):9541–9549
Article
CAS
Google Scholar
Kauffman LH (1987) On knots. Princeton University Press, Princeton
Google Scholar
Kauffman LH (1990) An invariant of regular isotopy. Trans Am Math Soc 318(2):417–471
Article
Google Scholar
Kauffman S (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford
Google Scholar
Kauffman LH (2001) Knots and physics, world scientific, series on knots and everything, vol 1. World Scientific, London
Kauffman LH (2005) Knots. In: Boi L (ed) Geometries of nature, living systems and human cognition. The new interactions of mathematics with natural sciences and the humanities. World Scientific, Singapore, pp 131–202
Chapter
Google Scholar
Kauffman LH, Lambropoulou S (2004) On the classification of rational tangles. Adv Appl Math 33(2):199–237
Article
Google Scholar
Képès F, Vaillant C (2003) Transcriptional-based solenoidal model of chromosomes. Complexus 1(4):171–180
Article
Google Scholar
Kervaire M (1965) Les nœuds de dimensions supérieures. Bull Soc Math France 93:225–271
Article
Google Scholar
Kimmins S, Sassoni-Corsi P (2005) Chromatin remodeling and epigenetic features of germ cells. Nature 434:583–589
CAS
PubMed
Article
Google Scholar
Kirby R (1978) A calculus for framed links in S3. Invent Math 45(1):35–56
Article
Google Scholar
Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837
CAS
PubMed
Article
Google Scholar
Lal A et al (2016) Genome scale patterns of supercoiling in a bacterial chromosome. Nat Commun 7(1):11055–11163
CAS
PubMed
PubMed Central
Article
Google Scholar
Lickorish WBR (1997) An introduction to knot theory, graduate texts in mathematics, vol 175. Springer, Heidelberg
Book
Google Scholar
Lodish H, Berk A, Zipursky A et al (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York
Google Scholar
Mazur B (2004) Perturbations, deformations, and variations (and “near-misses”) in geometry, physics, and number theory. Bull Am Math Soc (NS) 41(3):307–336
Article
Google Scholar
McClintock M (1984) The significance and responses of the genome to challenge. Science 226:792–801
CAS
PubMed
Article
Google Scholar
McGinty RK, Tan S (2015) Nucleosome structure and function. Chem Rev 115:2255–2273
CAS
PubMed
Article
Google Scholar
Misteli T (2007) Beyond the sequence. Cellular organization of genome function. Cell 128(4):787–800
CAS
PubMed
Article
Google Scholar
Murasugi K (1996) Knot theory and its applications. Birkhäuser, Boston
Google Scholar
Muskhelishvili G, Travers A (2016) The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 8(Suppl. 1):5–22
CAS
PubMed
PubMed Central
Article
Google Scholar
Nicolas G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley, New York
Google Scholar
Noble D (2006) The music of life. Biology beyond the genome. Oxford University Press, Oxford
Google Scholar
Noble D (2008) Genes and causation. Phil Trans R Soc Lond A 366(1878):3001–3015
CAS
Google Scholar
Ochs F et al (2019) Stabilization of chromatin topology safeguards genome integrity. Nature 574:571–574
CAS
PubMed
Article
Google Scholar
Ophl WF, Roberts GW (1978) Topological considerations in the theory of replication of DNA. J Math Biol 6:383–402
Article
Google Scholar
Penner RC (2016) Moduli spaces and macromolecules. Bull Am Math Soc 53:217–269
Article
Google Scholar
Penner RC, Waterman MS (1993) Spaces of RNA secondary structures. Adv Math 101(1):31–49
Article
Google Scholar
Peselis A, Serganov A (2014) Structure and function of pseudoknots involved in gene expression control. Wiley Interdisc Rev RNA 5(6):803–822
CAS
Article
Google Scholar
Porter LL, Looger LL (2018) Extant fold-switching proteins are widespread. Proc Natl Acad Sci USA 115(23):5968–5973
CAS
PubMed
PubMed Central
Article
Google Scholar
Ramam V, Shendure J, Duan Z (2016) Understanding Spatial Genome Organization: Methods and Insights. Genom Proteom Bioinform 14(1):7–20
Article
Google Scholar
Reidemeister K (1927) Elementare begründung der knotentheorie. Abh Math Sem Univ Hamburg 5(1):2432
Google Scholar
Reidemeister K (1932) Knotentheorie. Springer, Heidelberg/Berlin/New York
Google Scholar
Ricca RL, Nipoti B (2011) Gauss’s linking number revisited. J Knot Theory Ramific 20(10):1325–1343
Article
Google Scholar
Ridgway P, Almouzni G (2001) Chromatin assembly and organization. J Cell Sci 114:2711–2722
CAS
PubMed
Article
Google Scholar
Roca J (1998) Topoisomerases. Adv Genome Biol 5:463–485
Article
Google Scholar
Rolfsen D (1976) Knots and links, mathematical lecture series, vol 7. Publish or Perish, Huston
Google Scholar
Rosen R (1970) Dynamical systems theory in biology. Wiley, New York
Google Scholar
Scherrer K, Jost J (2007) Gene and genon concept: coding versus regulation. A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology. Theory Biosci 126(2):65–113
CAS
PubMed
PubMed Central
Article
Google Scholar
Seifert H (1935) Über die Geschlecht von Knoten. Math Ann 110(1):571–592
Article
Google Scholar
Sergei MM (2001) DNA topology: fundamentals, encyclopedia of life sciences. Nature Publishing Group, Berlin, pp 1–11
Google Scholar
Simondon G (2005) L’individuation à la lumière des notions de forme et d’information, Jérôme Million, Paris
Spera M (2006) A survey on the differential and symplectic geometry of linking numbers. Milan J Math 74:139–197
Article
Google Scholar
Strick TR, Allemand J-F, Bensimon D, Croquette V (1998) Behavior of Supercoiled DNA. Biophys J 74:2016–2028
CAS
PubMed
PubMed Central
Article
Google Scholar
Sumners DW (1990) Untangling DNA. Math Intell 12(3):71–80
Article
Google Scholar
Sumners DW (1992) Knot theory and DNA. In: New scientific applications of geometry and topology, PSAM, 45, Amer Math Soc, pp 39–72
Sutormin DA et al (2021) Diversity and Functions of Type II Topoisomerases. Acta Natur 13(1):59–75
CAS
Article
Google Scholar
Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev 9:465–476
CAS
Article
Google Scholar
Theimer CA, Blois CA, Feigon J (2005) Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol Cell 17(5):671–682
CAS
PubMed
Article
Google Scholar
Thom R (1972) Stabilité structurelle et morphogenèse. Benjamin, New York
Google Scholar
Thom R (1989) Modèles mathématiques de la morphogenèse. Christian Bourgois, Paris
Google Scholar
Vazques M, Sumners DW (2004) Tangles analysis of Gin site-specific recombination. Math Proc Camb Phil Soc 136(565):565–582
Article
Google Scholar
Venkata RY, Bansal M (2017) DNA structural features of eukaryotic TATA-containing and TATA-less promoters. FEBS Open Bio 7(3):324–334
Article
CAS
Google Scholar
Villota-Salazar NA, Mendoza-Mendoza A, Gonzáles-Prieto JM (2016) Epigenetics: from the past to the present. Front Life Sci 9(4):347–370
CAS
Article
Google Scholar
Vologodskii AV (1992) The topology and physics of circular DNA. CRC Press, Boca Raton, FL
Google Scholar
Waddington CH (1957) The strategy of the genes. Routledge, London
Google Scholar
Waddington CH (ed) (1968) Toward a theoretical biology. Routledge, London, pp 1968–1969
Google Scholar
Wang JC (1996) DNA topoisomerases. Ann Rev Biochem 65:635–692
CAS
PubMed
Article
Google Scholar
Wang JC, Caron PR, Kim RA (1990) The role of DNA topoisomerases in recombination and genome stability: a double-edged sword. Cell 62:403–406
CAS
PubMed
Article
Google Scholar
White JH (1989) An introduction to the geometry and topology of DNA structures. CRC Press, Boca Raton
Google Scholar
White JH, Cozzarelli NR, Bauer WR (1988) Helical repeat and linking number of surface-wrapped DNA. Science 241:323–327
CAS
PubMed
Article
Google Scholar
Wu FY (1992) Knot theory and statistical mechanics. Rev Mod Phys 64(4):1099–1129
Article
Google Scholar
Zeeman EC (1960) Unknotting spheres. Ann Math 72:350–361
Article
Google Scholar
Zeeman EC (1965) Twisting spun knots. Trans Am Math Soc 115:471–495
Article
Google Scholar
Zhurkin VB, Norouzi D (2021) Topological polymorphism of nucleosome and folding of chromatin. Biophys J 120(4):577–585
CAS
PubMed
PubMed Central
Article
Google Scholar