Skip to main content

Flow analysis of Carreau fluid model induced by the ciliary cells, smooth muscle cells and pressure gradient at the ampullar region entrance

Abstract

This theoretical analysis considers a biomechanical model in which the Carreau fluid model characterizes the viscoelastic nature of growing human embryo and secreted fluid. This model incorporates transport mechanisms that involve the swaying motions of ciliary cells, peristaltic contractions of smooth muscle cells and pressure gradient at the ampullar region entrance. Series form solutions of the resulting partial differential equations are obtained using the regular perturbation method. A theoretical estimate of effects of the condition of pressure gradient, geometric parameters and fluid model parameters on the flow variables that have relevance to the problem of growing embryo transport in the human fallopian tube is presented through the discussion of graphs. Furthermore, an analogy between the linearly viscous fluid, and the shear thinning and shear thickening characteristics of the Carreau fluid model is also presented. The pertinence of the obtained results with growing embryo transport in the human fallopian tube revealed that when shear thickening characteristics of the Carreau fluid model are considered then complete mitotic divisions take place properly with an estimated appropriate residue time about 3–4 days. Smaller size trapped boluses of the secreted fluid make the smooth forwarding of the growing embryo in the human fallopian tube when shear thinning characteristics of the Carreau fluid model are taken into account. Key modulators: progesterone (\(P_{4})\) and estradiol (\(E_{2}\)), prostaglandin \(E_{2}\) (\(PGE_{2}\)) and prostaglandin \(F_{2\alpha }\) (\(PGF_{2\alpha }\)) constraint the growing embryo transport.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Aguilar HN, Mitchell BF (2010) Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Updat 16(6):725–744

    CAS  Article  Google Scholar 

  • Ali N, Asghar Z, Sajid M, Beg OA (2019) Biological interactions between Carreau fluid and microswimmers in a complex wavy canal with MHD effects. J Braz Soc Mech Sci Eng 41(10):446

    Article  Google Scholar 

  • Ashraf H, Siddiqui AM, Rana MA (2018) Fallopian tube assessment of the peristaltic-ciliary flow of a linearly viscous fluid in a finite narrow tube. Appl Math Mech 39(3):437–454

    Article  Google Scholar 

  • Ashraf H, Siddiqui AM, Rana MA (2018) Fallopian tube analysis of the peristaltic-ciliary flow of third grade fluid in a finite narrow tube. Chin J Phys 56(2):605–621

    CAS  Article  Google Scholar 

  • Ashraf H, Siddiqui AM, Rana MA (2018) Analysis of the peristaltic-ciliary flow of Johnson-Segalman fluid induced by peristalsis-cilia of the human fallopian tube. Math Biosci 300:64–75

    CAS  Article  Google Scholar 

  • Blake JR, Vann PG, Winet H (1983) A model of ovum transport. J Theor Biol 102(1):145–166

    CAS  Article  Google Scholar 

  • Bush AW (2000) Perturbation methods for engineers and scientists, CRC Press Inc. Corporate Blvd, N.W., Boca Raton, Florida, p 33431

    Google Scholar 

  • Bylander A (2014) Progesterone’s effect on gamete transport in the fallopian tube. ISBN 978-91-628-9178-7, Printed in Gothenburg, Sweden

  • Carlson BM, Human Embryology, Developmental Biology, Saunders, an imprint of Elsevier Inc., 1600 John F. Kennedy Blvd. Ste, (1800) Philadelphia. PA 19103–2899(2014):36–37

  • Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16(1):99–127

    CAS  Article  Google Scholar 

  • Croxatto HB (2002) Physiology of gamete and embryo transport through the fallopian tube. Reprod Biomed Online 4(2):160–169

    CAS  Article  Google Scholar 

  • Eddy CA, Pauerstein CJ (1980) Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol 23(4):1177–1193

    CAS  Article  Google Scholar 

  • Ellahi R, Bhatti MM, Khalique CM (2017) Three-dimensional flow analysis of Carreau fluid model induced by peristaltic wave in the presence of magnetic field. J Mol Liq 241:1059–1068

    CAS  Article  Google Scholar 

  • Ellahi R, Riaz A, Nadeem S, and Ali M (2012) Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium. Mathematical problems in Engineering

  • Eytan O, Elad D (1999) Analysis of intra-uterine fluid motion induced by uterine contractions. Bull Math Biol 61(2):221–238

    CAS  Article  Google Scholar 

  • Eytan O, Jaffa AJ, Elad D (2001) Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med Eng Phys 23(7):475–484

    Article  Google Scholar 

  • Ezzati M, Djahanbakhch O, Arian S, Carr BR (2014) Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod Genet 31(10):1337–1347

    Article  Google Scholar 

  • Fauci LJ, Dillon R (2006) Biofluidmechanics of reproduction. Annu Rev Fluid Mech 38:371–394

    Article  Google Scholar 

  • Fung YC (1993) Bioviscoelastic Fluids. Biomechanics. Springer, New York, NY, pp 220–241

    Chapter  Google Scholar 

  • Ghazal S, Makarov JK, De Jonge CJ (2004) Egg transport and fertilization. Global Library of Women’s Medicine ISSN 1756–2228

  • He Ji-Huan (2006) Some asymptotic methods for strongly non-linear equations. Int J Modern Phys B 20(10):1141–1199

    Article  Google Scholar 

  • Jones RE, Lopez KH (2006) Human Reproductive Biology, \(\copyright \) Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803. USA

  • Kolle S, Reese S, Kummer W (2010) New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging. Theriogenology 73(6):786–795

    CAS  Article  Google Scholar 

  • Leese HJ (1988) The formation and function of oviduct fluid. Reproduction 82(2):843–856

    CAS  Article  Google Scholar 

  • Leese HJ, Tay JI, Reischl J, Downing SJ (2001) Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction 121(3):339–346

    CAS  Article  Google Scholar 

  • Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human Fallopian tube cilia. Hum Reprod Updat 12(4):363–372

    CAS  Article  Google Scholar 

  • Mahmood T, Saridogan E, Smutna S, Habib AM, Djahanbakhch O (1998) The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube. Hum Reprod (Oxford, England) 13(11):2991–2994

    CAS  Article  Google Scholar 

  • Moore KL, Torchia MG, Persaud TVN (2007) The Developing Human: Clinically Oriented Embryology With STUDENT CONSULT Online Access. 9/e. Elsevier India

  • Nadeem S, Munim A, Shaheen A, Hussain S (2016) Physiological flow of Carreau fluid due to ciliary motion. AIP Advances 6(3):035125

    Article  Google Scholar 

  • Papanastasiou TC (1994) Applied fluid mechanics, PTR Prentice Hall. Inc, A Paramount Communications Company Englewood Cliffs, NJ, p 07632

  • Raidt J, Werner C, Menchen T, Dougherty GW, Olbrich H, Loges NT, Omran H (2015) Ciliary function and motor protein composition of human fallopian tubes. Hum Reprod 30(12):2871–2880

    CAS  Article  Google Scholar 

  • Ruan YC, Zhou W, Chan HC (2011) Regulation of smooth muscle contraction by the epithelium: role of prostaglandins. Physiology 26(3):156–170

    CAS  Article  Google Scholar 

  • Siddiqui AM, Ashraf H, Walait A, Haroon T (2015) On study of horizontal thin film flow of Sisko fluid due to surface tension gradient. Appl Math Mech 36(7):847–862

    Article  Google Scholar 

  • Sokol E (2011) Clinical anatomy of the uterus, fallopian tubes, and ovaries. Global Library of Women’s Medicine, ISSN, pp 1756–2228

  • Wakeley PW (2008) Optimisation and Properties of Gamete Transport, Ph. D. dissertation, University of Birmingham, 139–166

  • Wanggren K (2007) Regulation and function of the human Fallopian tube, Institutionen for kvinnors och barns halsa/Department of Women’s and Children’s Health

  • Wanggren K, Lalitkumar PG, Stavreus-Evers A, Stabi B, Gemzell-Danielsson K (2006) Prostaglandin \(E_{2}\) and \(F_{2\alpha }\) receptors in the human Fallopian tube before and after mifepristone treatment. Mol Hum Reprod 12(9):577–585

    CAS  Article  Google Scholar 

  • Wanggren K, Stavreus-Evers A, Olsson C, Andersson E, Gemzell-Danielsson K (2008) Regulation of muscular contractions in the human Fallopian tube through prostaglandins and progestagens. Hum Reprod 23(10):2359–2368

    CAS  Article  Google Scholar 

  • Yeung WSB, Xu JS (2002) The oviduct and development of the preimplantation embryo. Reprod Med Rev 10(1):21–44

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ashraf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashraf, H., Siddiqui, A.M. & Rana, M.A. Flow analysis of Carreau fluid model induced by the ciliary cells, smooth muscle cells and pressure gradient at the ampullar region entrance. Theory Biosci. 140, 249–263 (2021). https://doi.org/10.1007/s12064-021-00352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-021-00352-8

Keywords

  • Peristaltic contractions of the smooth muscle cells
  • Swaying motions of the ciliary cells
  • Pressure gradient at the ampullar region entrance
  • Tube of finite length
  • Carreau fluid model
  • Growing human embryo transport