Skip to main content

Role of integrated noise in pathway-specific signal propagation in feed-forward loops

Abstract

Cells impose optimal noise control mechanism in diverse situations to cope with distinct environmental cues. Sometimes, it is desirable for the cell to utilize fluctuations for noise-driven processes. In other cases, noise can be harmful to the cell to show optimal fitness. It is, therefore, important to unravel the noise propagation mechanism inside the cell. Such noise controlling mechanism is accomplished by using gene transcription regulatory networks. One such gene regulatory network is feed-forward loop, having three regulatory nodes S, X and Y. Here, we consider the most abundant type 1 of coherent and incoherent feed-forward loops with both OR and AND logic functions, forming four different architectures. In OR logic function, the functions representing S and X act additively for the regulation of Y, while in AND logic function, the same functions (S and X) act multiplicatively for the regulation of Y. Measurement of susceptibility of the signal at output Y is done using elasticity of each regulation in FFLs. Using susceptibility, we demonstrate the nature of pathway integration by which one-step and two-step pathways get overlapped. The integration type is competitive for motifs having OR gate, while it is noncompetitive for the same with AND gate. The pathway integration property explains the output noise behavior of the motifs properly but cannot infer about the mechanism by which the upstream noise propagates to output. To account this, the total output noise is decomposed, which results in integrated noise as an additional noise source along with pathway-specific noise components. The integrated noise is found to appear as a consequence of integration between the pathways and has different functional characteristics explaining noise amplification and noise attenuation property of coherent and incoherent feed-forward loops, respectively. The noise decomposition also quantifies the contribution of different noise sources toward total noise. Finally, the noise propagation is being tuned as a function of input signal noise and its time scale of fluctuations, which shows considerable intrinsic noise strength and relatively slow relaxation time scale causes a higher degree of noise propagation in FFLs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. CRC Press, Boca Raton

    Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450

    CAS  PubMed  Google Scholar 

  • Bialek W, Setayeshgar S (2008) Cooperativity, sensitivity, and noise in biochemical signaling. Phys Rev Lett 100(25):258101

    PubMed  Google Scholar 

  • Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R (2005) Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15:116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burger A, Walczak AM, Wolynes PG (2010) Abduction and asylum in the lives of transcription factors. Proc Natl Acad Sci USA 107:4016

    CAS  PubMed  Google Scholar 

  • Carey L, van Dijk D, Sloot P, Kaandorp J, Segal E (2013) Promoter sequence determines the relationship between expression level and noise. PLoS Biol 11:e1001528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carignano A, Mukherjee S, Singh A, Seelig G (2018) Extrinsic noise suppression in micro RNA mediated incoherent feedforward loops, bioRxiv

  • Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A (2011) Information transduction capacity of noisy biochemical signaling networks. Science 334:354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier M, Venturelli O, El-Samad H (2015) The impact of different sources of fluctuations on mutual information in biochemical networks. PLoS Comput Biol 11:e1004462

    PubMed  PubMed Central  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley-Interscience, New York

    Google Scholar 

  • de Ronde WH, Tostevin F, ten Wolde PR (2010) Effect of feedback on the fidelity of information transmission of time-varying signals. Phys Rev E 82:031914

    Google Scholar 

  • de Ronde WH, Tostevin F, Ten Wolde PR (2012) Feed-forward loops and diamond motifs lead to tunable transmission of information in the frequency domain. Phys Rev E 86:021913

    Google Scholar 

  • Dey S, Soltani M, Singh A (2019) Enhancement of gene expression noise due to nonspecific transcription factor binding, bioRxiv

  • Dunlop MJ, Cox RS, Levine JH, Murray RM, Elowitz MB (2008) Regulatory activity revealed by dynamic correlations in gene expression noise. Nat Genet 40:1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elf J, Ehrenberg M (2003) Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res 13:2475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner CW (2009) Stochastic methods, 4th edn. Springer, Berlin

    Google Scholar 

  • Ghosh B, Karmakar R, Bose I (2005) Noise characteristics of feed forward loops. Phys Biol 2:36

    CAS  PubMed  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comp Phys 22:403

    CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340

    CAS  Google Scholar 

  • Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113:297

    CAS  Google Scholar 

  • Grigolon S, Di Patti F, De Martino A, Marinari E (2016) Noise processing by microRNA-mediated circuits: the Incoherent Feed-Forward Loop, revisited. Heliyon 2:e00095

    PubMed  PubMed Central  Google Scholar 

  • Grima R (2015) Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Phys Rev E 92:042124

    Google Scholar 

  • Gui R, Liu Q, Yao Y, Deng H, Ma C, Jia Y, Yi M (2016) Noise decomposition principle in a coherent feed-forward transcriptional regulatory loop. Front Physiol 7:600

    PubMed  PubMed Central  Google Scholar 

  • Gui R, Li ZH, Hu LJ, Cheng GH, Liu Q, Xiong J, Jia Y, Yi M (2018) Noise decomposition algorithm and propagation mechanism in feed-forward gene transcriptional regulatory loop. Chin Phys B 27:028706

    Google Scholar 

  • Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24:1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honeycutt RL (1992) Stochastic Runge-Kutta algorithms. I. White noise. Phys Rev A 45:600

    CAS  PubMed  Google Scholar 

  • Hornung G, Barkai N (2008) Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Comput Biol 4:e8

    PubMed  PubMed Central  Google Scholar 

  • Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451

    CAS  PubMed  Google Scholar 

  • Kittisopikul M, Suel GM (2010) Biological role of noise encoded in a genetic network motif. Proc Natl Acad Sci USA 107:13300

    CAS  PubMed  Google Scholar 

  • Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137:273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maity AK, Chaudhury P, Banik SK (2015) Role of relaxation time scale in noisy signal transduction. PLoS ONE 10:e0123242

    PubMed  PubMed Central  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci 100:11980

    CAS  PubMed  Google Scholar 

  • Mehta P, Goyal S, Long T, Bassler BL, Wingreen NS (2009) Information processing and signal integration in bacterial quorum sensing. Mol Syst Biol 5:325

    PubMed  PubMed Central  Google Scholar 

  • Nandi M, Biswas A, Banik SK, Chaudhury P (2018) Information processing in a simple one-step cascade. Phys Rev E 98:042310

    CAS  Google Scholar 

  • Nandi M, Banik SK, Chaudhury P (2019) Restricted information in a two-step cascade. Phys Rev E 100:032406

    CAS  PubMed  Google Scholar 

  • Osella M, Bosia C, Cora D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7:e1001101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsson J (2004) Summing up the noise in gene networks. Nature 427:415

    CAS  PubMed  Google Scholar 

  • Paulsson J (2005) Models of stochastic gene expression. Phys Life Rev 2:157

    Google Scholar 

  • Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307:1965

    CAS  PubMed  Google Scholar 

  • Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231

    CAS  PubMed  Google Scholar 

  • Rhee A, Cheong R, Levchenko A (2014) Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters. Proc Natl Acad Sci USA 111:17330

    CAS  PubMed  Google Scholar 

  • Shannon CE (1948) The mathematical theory of communication. Bell Syst Tech J 27:379

    Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Swain PS (2004) Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J Mol Biol 344(4):965

    CAS  PubMed  Google Scholar 

  • Tănase-Nicola S, Warren PB, ten Wolde PR (2006) Signal detection, modularity, and the correlation between extrinsic and intrinsic noise in biochemical networks. Phys Rev Lett 97:068102

    PubMed  Google Scholar 

  • Thattai M, van Oudenaarden A (2002) Attenuation of noise in ultrasensitive signaling cascades. Biophys J 82:2943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas P, Matuschek H, Grima R (2013) How reliable is the linear noise approximation of gene regulatory networks? BMC Genom 14(Suppl 4):1–5

    Google Scholar 

  • Tkačik G, Gregor T, Bialek W (2008) The role of input noise in transcriptional regulation. PLoS ONE 3(7):e2774

    PubMed  PubMed Central  Google Scholar 

  • Tocino A, Ardanuy R (2002) Runge-Kutta methods for numerical solution of stochastic differential equations. J Comput Appl Math 138:219

    Google Scholar 

  • Tsimring LS (2014) Noise in biology. Rep Prog Phys 77:026601

    PubMed  PubMed Central  Google Scholar 

  • van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. North-Holland, Amsterdam

    Google Scholar 

  • Walczak AM, Mugler A, Wiggins CH (2012) Analytic methods for modeling stochastic regulatory networks. Methods Mol Biol 880:273

    CAS  PubMed  Google Scholar 

  • Warmflash A, Dinner AR (2008) Signatures of combinatorial regulation in intrinsic biological noise. Proc Natl Acad Sci USA 105:17262

    CAS  PubMed  Google Scholar 

  • Zhang Q, Bhattacharya S, Andersen ME (2013) Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol 3:130031

    PubMed  PubMed Central  Google Scholar 

  • Ziv E, Nemenman I, Wiggins CH (2007) Optimal signal processing in small stochastic biochemical networks. PLoS ONE 2:e1077

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MN is thankful to Suman K Banik and Pinaki Chaudhury for critical discussion. MN acknowledges UGC, India (22/06/2014(i)EU-V) for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mintu Nandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 110 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nandi, M. Role of integrated noise in pathway-specific signal propagation in feed-forward loops. Theory Biosci. 140, 139–155 (2021). https://doi.org/10.1007/s12064-021-00338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-021-00338-6

Keywords

  • Gene regulatory networks
  • Feed-Forward loops
  • Langevin equation
  • Noise correlation
  • Noise decomposition
  • Signal sensitivity