Skip to main content

On the problem of biological form

Abstract

Embryonic development, which inspired the first theories of biological form, was eventually excluded from the conceptual framework of the Modern Synthesis as irrelevant. A major question during the last decades has centred on understanding whether new advances in developmental biology are compatible with the standard view or whether they compel a new theory. Here, I argue that the answer to this question depends on which concept of morphogenesis is held. Morphogenesis can be conceived as (1) a chemically driven or (2) a mechanically driven process. According to the first option, genetic regulatory networks drive morphogenesis. According to the second, morphogenesis results from an invariant tendency of embryonic tissues to restore changes in mechanical stress. While chemically driven morphogenesis allows an extension of the standard view, mechanically driven morphogenesis would deeply transform it. Which of these hypotheses has wider explanatory power is unknown. At present, the problem of biological form remains unsolved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ambrosini A, Gracia M, Proag A, Rayer M, Monier B, Suzanne M (2017) Apoptotic forces in tissue morphogenesis. Mech Dev 144:33–42

    CAS  PubMed  Google Scholar 

  • Ali R, Harris J, Ermentrout B (2016) Pattern formation in oscillatory media without lateral inhibition. Phys Rev E 94:012412

    PubMed  Google Scholar 

  • Beloussov LV (2012a) Mechano-geometric generative rules of morphogenesis. Biol Bull 39:119–126

    Google Scholar 

  • Beloussov LV (2012b) Morphogenesis as a macroscopic self-organizing process. Biosystems 109:262–279

    PubMed  Google Scholar 

  • Beloussov LV, Grabovsky VI (2003) Morphomechanics: goals, basic experiments and models. Int J Dev Biol 50:81–92

    Google Scholar 

  • Beloussov LV, Grabovsky VI (2007) Information about a form (on the dynamic laws of morphogenesis). Biosystems 87:204–214

    PubMed  Google Scholar 

  • Beloussov LV, Saveliev SV, Naumidi II, Novoselov VV (1994) Mechanical stresses in embryonic tissues: patterns, morphogenetic role, and involvement in regulatory feedback. Int Rev Cytol 150:1–34

    CAS  PubMed  Google Scholar 

  • Bénard H (1900) Les tourbillons cellulaires dans une nappe liquide. Rev Gen Sci Pures Appl 11:1261–1271

    Google Scholar 

  • Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, Swoger J, Sharpe J (2010) The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol 8:e1000420

    PubMed  PubMed Central  Google Scholar 

  • Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M (2014) Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. PNAS 111:10598–10603

    CAS  PubMed  Google Scholar 

  • Brodland GW (2002) The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J Biomech Eng 124:188–197

    PubMed  Google Scholar 

  • Cerchiari AE, Garbe JC, Jee NY, Todhunter ME, Broaders KE, Peehl DM, Desai TA, LaBarge MA, Thomson M, Gartner ZJ (2015) A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity. PNAS 112:2287–2292

    CAS  PubMed  Google Scholar 

  • Damon BJ, Mezentseva NV, Kumaratilake JS, Forgacs G, Newman SA (2008) Limb bud and flank mesoderm have distinct “physical phenotypes” that may contribute to limb budding. Dev Biol 321:319–330

    CAS  PubMed  Google Scholar 

  • Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406:188–192

    Google Scholar 

  • Driever W, Nusslein-Volhard C (1988) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104

    CAS  PubMed  Google Scholar 

  • Duchesneau F (2006) “Essential force” and “formative force”: models for epigenesis in the 18th century. In: Feltz B, Crommelinck M, Goujon P (eds) Self-organization and emergence in life sciences. Springer, Berlin, pp 171–186

    Google Scholar 

  • Fagotto F (2014) The cellular basis of tissue separation. Development 141:3303–3318

    CAS  PubMed  Google Scholar 

  • Gayon J (2000) From measurement to organization: a philosophical scheme for the history of the concept of heredity. In: Beurton PJ, Falk R, Rheinberger HJ (eds) The concept of the gene in development and evolution. Cambridge University Press, Cambridge, pp 69–90

    Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    CAS  PubMed  Google Scholar 

  • Green JB, Sharpe J (2015) Positional information and reaction–diffusion: two big ideas in developmental biology combine. Development 142:1203–1211

    CAS  PubMed  Google Scholar 

  • Halley JD, Winkler DA (2008) Consistent concepts of self-organization and self-assembly. Complexity 14:10–17

    Google Scholar 

  • Harris AK, Stopak D, Warner P (1984) Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model. J Embryol Exp Morp 80:1–20

    CAS  Google Scholar 

  • Jaeger J, Monk N (2014) Bioattractors: dynamical systems theory and the evolution of regulatory processes. J Physiol 592:2267–2281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger J, Sharpe J (2014) On the concept of mechanism in development. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 56–78

    Google Scholar 

  • Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430:368–371

    CAS  PubMed  Google Scholar 

  • Keller EF (2014) From gene action to reactive genomes. J Physiol 592:2423–2429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D, Skoglund P (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc B 355:897–922

    CAS  Google Scholar 

  • Kondo S, Miura T (2010) Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620

    CAS  PubMed  Google Scholar 

  • Krieg M, Arboleda-Estudillo Y, Puech PH, Kafer J, Graner F, Muller DJ, Heisenberg CP (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:429–436

    CAS  PubMed  Google Scholar 

  • Lambert FL (2002) Disorder—a cracket crutch for supporting entropy discussions. J Chem Edu 79:187–192

    CAS  Google Scholar 

  • Lecuit T, Lenne PF, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Ann Rev Cell Dev Biol 27:157–184

    CAS  Google Scholar 

  • Linde-Medina M (2010) Natural selection and self-organization: a deep dichotomy in the study of organic form. Ludus Vitalis XVIII:25–56

    Google Scholar 

  • Maître JL, Berthoumieux H, Krens SFG, Salbreux G, Jülicher F, Paluch E, Heisenberg CP (2012) Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338:253–256

    PubMed  Google Scholar 

  • Mammoto A, Mammoto T, Ingber DE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125:3061–3073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcon L, Sharpe J (2012) Turing patterns in development: what about the horse part? Curr Opin Genet Dev 22:578–584

    CAS  PubMed  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    CAS  PubMed  Google Scholar 

  • McMillen P, Holley SA (2015) Integration of cell–cell and cell–ECM adhesion in vertebrate morphogenesis. Curr Opin Cell Biol 36:48–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt H (2012) Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface Focus 2:407–416

    PubMed  PubMed Central  Google Scholar 

  • Meinhardt H, Gierer A (1974) Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci 15:321–346

    CAS  PubMed  Google Scholar 

  • Mercker M, Hartmann D, Marciniak-Czochra A (2013) A mechanochemical model for embryonic pattern formation: coupling tissue mechanics and morphogen expression. PLoS ONE 8:e82617

    PubMed  PubMed Central  Google Scholar 

  • Mercker M, Brinkmann F, Marciniak-Czochra A, Richter T (2016) Beyond turing: mechanochemical pattern formation in biological tissues. Biol Direct 11:22

    PubMed  PubMed Central  Google Scholar 

  • Montévil M (2020) Historicity at the heart of biology. Theor Biosci (in press)

  • Newman SA, Bhat R (2008) Dynamical patterning modules: physico-genetic determinants of morphological development and evolution. Phys Biol 5:1–14

    Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

  • Piepenburg O, Vorbrüggen G, Jäckle H (2000) Drosophila segment borders result from unilateral repression of hedgehog activity by wingless signaling. Mol Cell 6:203–209

    CAS  PubMed  Google Scholar 

  • Prigogine I (1980) From being to becoming: time and complexity in the physical sciences. Freeman, New York

    Google Scholar 

  • Quiñinao C, Prochiantz A, Touboul J (2015) Local homeoprotein diffusion can stabilize boundaries generated by graded positional cues. Development 142:1860–1868

    PubMed  PubMed Central  Google Scholar 

  • Ricca BL, Venugopalan G, Fletcher DA (2013) To pull or be pulled: parsing the multiple modes of mechanotransduction. Curr Opin Cell Biol 25:558–564

    CAS  PubMed  Google Scholar 

  • Roe SA (1979) Rationalism and embryology: Caspar Friedrich Wolff’s theory of epigenesis. J Hist Biol 12:1–43

    CAS  PubMed  Google Scholar 

  • Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Ann Rev Cell Dev Biol 27:377–407

    CAS  Google Scholar 

  • Schroeder MD, Greer C, Gaul U (2011) How to make stripes: deciphering the transition from non-periodic to periodic patterns in Drosophila segmentation. Development 138:3067–3078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA (2012) Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338:1476–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shyer AE, Rodrigues AR, Schroeder GG, Kassianidou E, Kumar S, Harland RM (2017) Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science 357:811–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Small S, Blair A, Levine M (1992) Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J 11:4047–4057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg MS (2003) Cell adhesive interactions and tissue self-organization. In: Müller GB, Newman SA (eds) Origination of organisational form: beyond the gene in developmental and evolutionary biology. MIT Press, Cambridge, pp 137–163

    Google Scholar 

  • Surkova S, Spirov AV, Gursky VV, Janssens H, Kim AR, Radulescu O, Vanario-Alonso CE, Sharp DH, Samsonova M, Reinitz J (2009a) Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput Biol 5:e1000303

    PubMed  PubMed Central  Google Scholar 

  • Surkova S, Spirov AV, Gursky VV, Janssens H, Kim AR, Radulescu O, Vanario-Alonso CE, Sharp DH, Samsonova M, Reinitz J (2009b) Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biol 7:e1000049

    PubMed  PubMed Central  Google Scholar 

  • Taber LA (2008) Theoretical study of Beloussov’s hyper-restoration hypothesis for mechanical regulation of morphogenesis. Biomech Model Mechanobiol 7:427–441

    PubMed  Google Scholar 

  • Taber LA (2009) Towards a unified theory for morphomechanics. Philos Trans R Soc A 367:3555–3583

    Google Scholar 

  • Tabony J (2006) Historical and conceptual background of self-organization by reactive processes. Biol Cell 98:589–602

    CAS  PubMed  Google Scholar 

  • Terrall M (2002) Speculation and Experiment in Enlightenment Life Sciences. A cultural history of heredity I: 17th and 18th centuries. Max-Planck-Institut für Wissenschaftsgeschichte, Berlin

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237:37–72

    Google Scholar 

  • Waterston R, Lindblad-Toh K, Birney E, Rogers J, Abril J, Agarwal P (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    CAS  PubMed  Google Scholar 

  • Winfree AT (1984) The prehistory of the Belousov–Zhabotinsky oscillator. J Chem Educ 61:661–663

    Google Scholar 

  • Witt E (2008) Form—a matter of generation: the relation of generation, form, and function in the epigenetic theory of Caspar F. Wolff. Sci Context 21:649–664

    PubMed  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Linde-Medina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Linde-Medina, M. On the problem of biological form. Theory Biosci. 139, 299–308 (2020). https://doi.org/10.1007/s12064-020-00317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-020-00317-3

Keywords

  • Genetic program
  • Epigenesis
  • Morphogenesis
  • Preformationism
  • Self-organisation
  • Tissue patterning