Skip to main content

Connected pretopology in recombination space

Abstract

Topological features evolved from genetic operators in the recombination space play a crucial role in the course of evolution. Different crossover models generated in a recombination space can be structured by pretopological space. This paper deals with several types of connectedness properties of recombination space in three different cases of unequal crossover of recombination space structured as pretopology. It is shown that unrestricted unequal crossover is one-sidedly connected and consequently hyper-connected, apo-connected and connected as well. Restricted unequal crossover is hyper-connected and connected. Unequal sister chromatid exchange is connected.

This is a preview of subscription content, access via your institution.

References

  • Adams C, Franzosa R (2008) Introduction to topology pure and applied. Pearson Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Alexandroff P (1937) Diskrete raume. Mat Sb (NS) 2:501–518

    Google Scholar 

  • Ali T (2011) Modelling RNA evolution. In: Proceeding of WASET conferences Paris

  • Ali T, Phukan CK (2011) Fuzzy proximity in phenotype space. Int J Adv Comput Math Sci 2:117–125

    Google Scholar 

  • Ali T, Phukan CK (2012) Incompatibility of metric structure in recombination space. Int J Comput Appl 43(14):1–6

    Google Scholar 

  • Arenas FG (1999) Alexandroff spaces. Acta Math Univ Comenianae 68:17–25

    Google Scholar 

  • Axelrod DE, Baggerly KA, Kimmel M (1994) Gene amplification by unequal sister chromatid exchange: probabilistic modeling and analysis of drug resistance data. J Theor Biol 168:151–159

    CAS  Article  Google Scholar 

  • Belmandt ZT (1993) Manuel de prétopologie et ses applications. Hermès, Paris

    Google Scholar 

  • Čech E (1966) Topological spaces. Wiley, Hoboken

    Google Scholar 

  • Cupal J, Kopp S, Stadler PF (2000) RNA shape space topology. Artif Life 6:3–23

    CAS  Article  Google Scholar 

  • Dalud-Vincent M, Brissaud M, Lamure M (2011) Connectivities and partitions in a pretopological space. Int Math Forum 6(45):2201–2215

    Google Scholar 

  • Fontana W, Schuster P (1998) Continuity in evolution: on the nature of transition. Science 280:1451–1455

    CAS  Article  Google Scholar 

  • Gastl GC, Hammer PC (1965) Extended topology. Neighborhoods and convergents. In: N.N., editor, Proceedings of the colloquium on convexity 1965, pp 104–116, Copenhagen, DK, 1967. Kobenhavns Univ. Matematiske Inst

  • Gitchoff P, Wagner GP (1996) Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism. Complexity 2:37–43

    Article  Google Scholar 

  • Gnilka S (1994) On extended topologies. I: closure operators. Ann Soc Math Pol Ser I Commentat Math 34:81–94

    Google Scholar 

  • Kruger J, Vogel F (1975) Population genetics of unequal crossing over. J Mol Evol 4:201–247

    Article  Google Scholar 

  • Kuratowski C (1949) Sur la notion de limite topologique d’ensembles. Ann Soc Polon Math 21:219–225

    Google Scholar 

  • Mynerd F, Seal GJ (2010) Phenotype spaces. J Theor Biol 60:247–266

    Google Scholar 

  • Shpak M, Wagner GP (2000) Asymmetry of configuration space induced by unequal crossover: implications for a mathematical theory of evolutionary innovation. Artif Life 6:25–43

    CAS  Article  Google Scholar 

  • Stadler BMR, Stadler PF (2002) Generalized topological spaces in evolutionary theory and combinational chemistry. J Chem Inf Comput Sci 42:577–585

    CAS  Article  Google Scholar 

  • Stadler BMR, Stadler PF (2004) The topology of evolutionary biology. In: Ciobanu IG, Rozenerg G (eds) Modelling in molecular biology. Springer, Berlin, pp 267–286

    Chapter  Google Scholar 

  • Stadler P, Stadler B (2006) Genotype phenotype maps. Biol Theory 3:268–279

    Article  Google Scholar 

  • Stadler PF, Wagner GP (1998) The algebraic theory of recombination spaces. Evol Comput 5:241–275

    Article  Google Scholar 

  • Stadler PF, Seitz R, Wagner GP (2000) Evolvability of complex characters: population dependent Fourier decomposition of fitness landscapes over recombination spaces. Bull Math Biol 62:399–428

    CAS  Article  Google Scholar 

  • Stadler BMR, Stadler PF, Wagner G, Fontana W (2001) The topology of possible: formal spaces underlying patterns of evolutionary change. J Theor Biol 213:241–274

    CAS  Article  Google Scholar 

  • Stadler BMR, Stadler PF, Shapk M, Wanger GP (2002) Recombination spaces, metrics, and pretopologies. Z Phys Chem 216:217–234

    CAS  Google Scholar 

  • Stong RE (1966) Finite topological spaces. Trans AMS 123:325–340

    Article  Google Scholar 

  • Wagner G, Stadler PF (2003) Quasi-independence, homology and the unity of type: a topological theory of characters. J Theor Biol 220:505–527

    Article  Google Scholar 

  • Willard S (1970) General topology. Addison Wesley Publishing Co., Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Kanta Phukan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phukan, C.K. Connected pretopology in recombination space. Theory Biosci. 139, 145–151 (2020). https://doi.org/10.1007/s12064-019-00304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-019-00304-3

Keywords

  • Closure operator
  • Strong connectedness
  • Hyper-connectedness
  • Apo-connectedness