Advertisement

Average Fitness Differences on NK Landscapes

  • Wim HordijkEmail author
  • Stuart A. Kauffman
  • Peter F. Stadler
Original Article

Abstract

The average fitness difference between adjacent sites in a fitness landscape is an important descriptor that impacts in particular the dynamics of selection/mutation processes on the landscape. Of particular interest is its connection to the error threshold phenomenon. We show here that this parameter is intimately tied to the ruggedness through the landscape’s amplitude spectrum. For the NK model, a surprisingly simple analytical estimate explains simulation data with high precision.

Keywords

NK model Fitness landscapes Elementary landscape Graph Laplacian Error threshold 

Notes

Acknowledgements

WH thanks the Institute for Advanced Study, Amsterdam, for financial support through a fellowship. Discussions with Bärbel M. R. Stadler are gratefully acknowledged.

Supplementary material

References

  1. Bonhoeffer S, Stadler PF (1993) Errorthreshold on complex fitness landscapes. J Theor Biol 164:359–372CrossRefGoogle Scholar
  2. Bull JJ, Ancel Meyers L, Lachmann M (2005) Quasispecies made simple. PLoS Comput Biol 1:e61CrossRefGoogle Scholar
  3. Buzas J, Dinitz J (2014) An analysis of NK landscapes: Interaction structure, statistical properties, and expected number of local optima. IEEE Trans Evol Comput 18:807–818CrossRefGoogle Scholar
  4. Campos PRA, Adami C, Wilke CO (2002) Optimal adaptive performance and delocalization in NK fitness landscapes. Physica A 304:495–506CrossRefGoogle Scholar
  5. de Oliveira VM, Fontanari JF, Stadler PF (1999) Metastable states in high order short-range spin glasses. J Phys A Math Gen 32:8793–8802CrossRefGoogle Scholar
  6. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 10:465–523CrossRefGoogle Scholar
  7. Eigen M, McCaskill J, Schuster P (1989) The molecular quasispecies. Adv Chem Phys 75:149–263Google Scholar
  8. García-Pelayo R, Stadler PF (1997) Correlation length, isotropy, and meta-stable states. Physica D 107:240–254CrossRefGoogle Scholar
  9. Grover LK (1992) Local search and the local structure of NP-complete problems. Oper Res Lett 12:235–243CrossRefGoogle Scholar
  10. Hordijk W, Stadler PF (1998) Amplitude spectra of fitness landscapes. J Complex Syst 1:39–66CrossRefGoogle Scholar
  11. Kallel L, Naudts B, Reeves CR (2001) Properties of fitness functions and search landscapes. In: Kallel L, Naudts B, Rogers A (eds) Theoretical aspects of evolutionary computing. Springer, Heidelberg, pp 175–206CrossRefGoogle Scholar
  12. Kauffman SA (1989) Adaptation on rugged fitness landscapes. In: Stein D (ed) Lectures in the sciences of complexity. Addison-Wesley, Boston, pp 527–618Google Scholar
  13. Kauffman SA (1993) Origins of order: self-organization and selection in evolution. Oxford University Press, OxfordGoogle Scholar
  14. Kauffman SA, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128:11–45CrossRefGoogle Scholar
  15. Kaul H, Jacobson SH (2006) Global optima results for the kauffman NK model. Math Program 106:319–338CrossRefGoogle Scholar
  16. Klemm K, Stadler PF (2014) Rugged and elementary landscapes. In: Borenstein Y, Moraglio A (eds) Theory and principled methods for designing metaheustics, natural computing series. Springer, Berlin, pp 41–61CrossRefGoogle Scholar
  17. Kondrashov DA, Kondrashov FA (2015) Topological features of rugged fitness landscapes in sequence space. Trends Genet 31:24–33CrossRefGoogle Scholar
  18. McCaskill JS (1984) A localisation threshhold for macromolecular quasispecies from continuously distributed replication rates. J Chem Phys 80:5194–5202CrossRefGoogle Scholar
  19. Mohar B (1997) Some applications of Laplace eigenvalues of graphs. In: Hahn G, Sabidussi G (eds) Graph symmetry: algebraic methods and applications, vol. 497 of NATO ASI Series C. Kluwer, Dordrecht, pp 227–275Google Scholar
  20. Neidhart J, Szendro IG, Krug J (2013) Exact results for amplitude spectra of fitness landscapes. J Theor Biol 332:218–227CrossRefGoogle Scholar
  21. Nowak S, Krug J (2015) Analysis of adaptive walks on NK fitness landscapes with different interaction schemes. J Stat MechGoogle Scholar
  22. Ochoa G (2006) Error thresholds in genetic algorithms. Evol Comp 14:157–182CrossRefGoogle Scholar
  23. Reidys CM, Stadler PF (2001) Neutrality in fitness landscapes. Appl Math Comput 117:321–350Google Scholar
  24. Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44:3–54CrossRefGoogle Scholar
  25. Richter H, Engelbrecht A, editors (2014) Recent advances in the theory and application of fitness landscapes, vol. 6 of emergence, complexity, and computation. Springer, BerlinGoogle Scholar
  26. Schuster P (2016) Quasispecies on fitness landscapes. In: Domingo E, Schuster P (eds) Quasispecies: from theory to experimental systems. Springer, Heidelberg, pp 61–120Google Scholar
  27. Semenov YS, Bratus AS, Novozhilov AS (2014) On the behavior of the leading eigenvalue of Eigen’s evolutionary matrices. Math Biosci 258:134–147CrossRefGoogle Scholar
  28. Stadler BMR, Stadler PF (2002) Generalized topological spaces in evolutionary theory and combinatorial chemistry. J Chem Inf Comput Sci 42:577–585CrossRefGoogle Scholar
  29. Stadler PF (1994) Linear operators on correlated landscapes. J Phys I France 4:681–696CrossRefGoogle Scholar
  30. Stadler PF (1996) Landscapes and their correlation functions. J Math Chem 20:1–45CrossRefGoogle Scholar
  31. Stadler PF, Happel R (1999) Random field models for fitness landscapes. J Math Biol 38:435–478CrossRefGoogle Scholar
  32. Walsh JL (1923) A closed set of normal orthogonal functions. Amer J Math 45:5–24CrossRefGoogle Scholar
  33. Weinberger E (1991) Local properties of Kauffman’s N-k model: a tunably rugged energy landscape. Phys Rev A 44:6399–6413CrossRefGoogle Scholar
  34. Whitley LD, Sutton AM, Howe AE (2008) Understanding elementary landscapes. In: Ryan C, Keijzer M (eds) Genetic and evolutionary computation conference, GECCO 2008, pp 585–592. ACMGoogle Scholar
  35. Wiehe T (1997) Model dependency of error thresholds: the role of fitness functions and contrasts between the finite and infinite sites models. Genet Res 69:127–136CrossRefGoogle Scholar
  36. Wright S (1932) The roles of mutation, inbreeding, crossbreeeding and selection in evolution. In: Jones DF (ed) Proceedings of the sixth international congress on genetics, vol 1. Brooklyn Botanic Gardens, New York, pp 356–366Google Scholar
  37. Wright S (1967) “Surfaces” of selective value. Proc Nat Acad Sci USA 58:165–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SmartAnalytiX.comLausanneSwitzerland
  2. 2.Institute for Systems BiologySeattleUSA
  3. 3.Bioinformatics Group, Department of Computer ScienceLeipzig UniversityLeipzigGermany
  4. 4.Interdisciplinary Center of BioinformaticsLeipzig UniversityLeipzigGermany
  5. 5.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig UniversityLeipzigGermany
  6. 6.Competence Center for Scalable Data Services and SolutionsLeipzig UniversityLeipzigGermany
  7. 7.Leipzig Research Center for Civilization DiseasesLeipzig UniversityLeipzigGermany
  8. 8.Max Planck Institute for Mathematics in the ScienceLeipzigGermany
  9. 9.University of ViennaInstitute for Theoretical ChemistryViennaAustria
  10. 10.Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations