Skip to main content

Art Forms in Nature: radiolaria from Haeckel and Blaschka to 3D nanotomography, quantitative image analysis, evolution, and contemporary art

Abstract

The illustrations of the late nineteenth-/twentieth-century scientist/artist Ernst Haeckel, as depicted in his book Art Forms in Nature (originally in German as Kunstformen der Natur, 1898–1904), have been at the intersection of art, biology, and mathematics for over a century. Haeckel’s images of radiolaria (microscopic protozoans described as amoeba in glass houses) have influenced various artists for over a century (glass artists Leopold and Rudolph Blaschka; sculptor Henry Moore; architects Rene Binet, Zaha Hadid, Antoni Gaudi, Chris Bosse and Frank Gehry; and designers–filmmakers Charles and Ray Eames). We focus on this history and extend the artistic, biological, and mathematical contributions of this interdisciplinary legacy by going beyond the 3D visual, topological, and geometric analyses of radiolaria to include the nanoscale with graph theory, spatial statistics, and computational geometry. We analyze multiple visualizations of radiolaria generated through Haeckel’s images, light microscopy, scanning electron microscopy, micro- and nanotomography, and three-dimensional computer rendering. Mathematical analyses are conducted using the image analysis package “Ka-me: A Voronoi Image Analyzer.” Further analyses utilize three-dimensional printing, laser etched crystalline glass art, and sculpture. Open sharing of three-dimensional nanotomography of radiolaria and other protozoa through MorphoSource enables new possibilities for artists, architects, paleontologists, structural morphologists, taxonomists, museum curators, and mathematical biologists. Distinctively, newer models of radiolaria fit into a larger context of productive interdisciplinary collaboration that continues Haeckel’s legacy that lay a foundation for new work in biomimetic design and additive manufacturing where artistic and scientific models mutually and robustly generate wonder, beauty, utility, curiosity, insight, environmentalism, theory, and questions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Source: Maartens (2017). b Marguerita Hagan (2018) had independently sculpted a three-layer test of a radiolarian and was surprised when Jungck sent her Fric’s image. The piece was one of many in her one-person show at the Philadelphia Area Fine Arts building

Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  • Aita Y, Suzuki N, Ogane K, Sakai T, Lazarus D, Young J, Tanimura Y (2009) Haeckel Radiolaria Collection and the HMS Challenger Plankton Collection. Joint Haeckel and Ehrenberg Project: reexamination of the Haeckel and Ehrenberg microfossil collection as a historical and scientific legacy. Japan National Museum of Nature and Science, Monograph, Tokyo, vol 40, pp 35–45

  • Ball A, Abel R, Ambers J, Brierley L, Howard L (2011) Micro-computed tomography applied to museum collections. Microsc Microanal 17(S2):1794–1795

    Article  Google Scholar 

  • Bandyopadhyay A, Heer B (2018) Additive manufacturing of multi-material structures. Mater Sci Eng R Rep 129:1–16

    Article  Google Scholar 

  • Bergdoll B (2005) Les Esquisses Decoratives de Rene Binet’. Rene Binet 1866–1911, un architecte de la Belle Epoque100–09

  • Bergdoll B (2007) Of crystals, cells, and strata: natural history and debates on the form of a new architecture in the nineteenth century. Archit Hist 50:1–29

    Article  Google Scholar 

  • Bertini M, Verveniotou E, Lowe M, Giles Miller C (2016) Laser ablation inductively coupled plasma mass spectrometry investigation of late 19th Century Blaschka marine invertebrate glass models. J Archaeol Sci Rep 6:506–517

    Google Scholar 

  • Bertol D (2015) The making of geometry. Procedia Technol 20:39–45

    Article  Google Scholar 

  • Binet R (1902) Esquisses décoratives. Librarie Centrale des Beaux-Arts, Paris

    Google Scholar 

  • Bouligand Y (2004) The renewal of ideas about biomineralisations. CR Palevol 3(6–7):617–628

    Article  Google Scholar 

  • Brain RM (2009) Protoplasmania: Huxley, Haeckel and the vibratory organism in late nineteenth- century science and art. In: Larson B, Brauer F (eds) The art of evolution: darwin, darwinisms, and visual culture. Dartmouth College Press, Hanover, pp 92–123

    Google Scholar 

  • Breidbach O (1998) Brief instructions for viewing Haeckel’s pictures. In: Haeckel E, Breidbach O, Hartman R, Eibl-Eibesfeldt I (eds) Art Forms in Nature: The Prints of Ernst Haeckel One Hundred Color Plates (monograph). Prestel, Munich, pp 9–18

    Google Scholar 

  • Breidbach O (2002) The former synthesis—some remarks on the typological background of Haeckel’s ideas about evolution. Theory Biosci 121(3):280–296

    Google Scholar 

  • Breidbach O (2003) The beauties and the beautiful—some considerations from the perspective of neuronal aesthetics. In: Voland E, Grammer K (eds) Evolutionary aesthetics. Springer, Berlin, pp 39–68

    Chapter  Google Scholar 

  • Breidbach O (2005) Art forms from the ocean: the radiolarian prints of Ernst Haeckel. Prestel, Munich

    Google Scholar 

  • Brierley L (2009) Art Forms in nature examination and conservation of a blaschka glass model of the protozoan Aulosphaera elegantissima. Stud Conserv 54(4):255–267

    Article  CAS  Google Scholar 

  • Brill ER, Huber F (2016) Sea creatures in glass: the Blaschka Marine Animals at Harvard. Scala Arts Publishers, New York

    Google Scholar 

  • Bueno E (2009) Algorithmic Form Generation of a Radiolarian Pavilion. Int J Archit Comput 7(4):677–688

    Article  Google Scholar 

  • Ceccato C (1999) The architect as toolmaker: computer-based generative design tools and methods. In: CAADRIA ‘99 (Proceedings of the fourth conference on computer aided architectural design research in asia/ISBN 7-5439-1233-3) Shanghai (China) 5–7 May 1999, pp 295–304

  • Cohen PS, Naginski E (2014) The return of nature: sustaining architecture in the face of sustainability. Routledge, Abingdon

    Google Scholar 

  • Deane W (1894) The Ware Collection of Blaschka glass models of flowers at Harvard. Bot Gaz 19(4):144–148

    Article  Google Scholar 

  • Delue RZ (2010) A combined review of: Darwins Korallen: Frühe Evolutionsmodelle und die Tradition der Naturgeschichte; Endless Forms: Charles Darwin, Natural Science, and the Visual Arts; The Art of Evolution: Darwin, Darwinisms, and Visual Culture; and Darwin’s Pictures: Views of Evolutionary Theory, 1837–1874. Art Bull 92(4):386–391

    Google Scholar 

  • Dolan JR, Le Peter J, Williams B, Evans DW, Roberts DJ, Thomas DN (2015) Art Forms from the Abyss: Ernst Haeckel’s Images from the HMS Challenger Expedition. Prestel, Munich, pp 121–122. ISBN 978-3791381411

    Google Scholar 

  • Donofrio M (2016) Topology optimization and advanced manufacturing as means for the design of sustainable building components. Procedia Eng 145:638–645

    Article  Google Scholar 

  • Dyer R (2008) Learning through glass: the Blaschka marine models in North American post-secondary education. Hist Biol 20(1):29–37

    Article  PubMed  Google Scholar 

  • Dyke GJ, Julia S (2005) The search for a ‘smoking gun’: No need for an alternative to the Linnean system of classification. In: Minelli A (ed) Animal Names, Istituto Veneto di Scienze, Lettere ed Arti, Venice, pp 49–65

    Google Scholar 

  • Emmer M (2002) Mathland: from topology to virtual architecture. In: Emmer M (ed) Mathematics and culture II. Visual perfection: mathematics and creativity. Springer, Berlin, pp 65–78

    Google Scholar 

  • Gamwell L (2003) Beyond the visible-microscopy, nature, and art. Science 299(5603):49–50

    Article  CAS  PubMed  Google Scholar 

  • Gardner M (2001) The colossal book of mathematics: classical puzzles, paradoxes, and problems. In: Mathematical zoo, WW. North, New York, p 643 (Originally GARDNER, MARTIN. "MATHEMATICAL ZOO OF ASTOUNDING CRITTERS, IMAGINARY AND OTHERWISE." Scientific American 238, no. 6 (1978): 18.)

  • Gould SJ (1971) D’Arcy Thompson and the science of form. In: New literary history 2 (2) form and its alternatives (Winter), pp 229–258

  • Guex J, O’Dogherty L, Carter ES, Goričan Š, Bartolini A (2012) Geometrical transformations of selected Mesozoic radiolarians. Geobios 45(6):541–554

    Article  Google Scholar 

  • Hackethal S (2008) The Blaschka models of the Humboldt University of Berlin and their historical context. Hist Biol 20(1):19–28

    Article  PubMed  Google Scholar 

  • Haeckel E (1862) Die Radiolarien (Rhizopoda Radiolaria). Eine Monographie. Atlas von Fünf und Dreissig Kupfertafeln. Verlag von Georg Reimer, Berlin. [Reprinted as: Haeckel E (2005) Art forms from the ocean: the Radiolarian atlas of 1862. Prestel Verlag, Munich and London]

  • Haeckel E (1866). Generelle Morphologie der Organis men. Allgemeine Grundzüge der organischen Formen-Wis senschaft, mechanisch begründet durch die von Charles Dar win reformierte Deszendenztheorie. Georg Reimer, (v. 1, Allgemeine Anatomie der Organismen; v. 2, All gemeine Entwicklungsgeschichte der Organism), Berlin

  • Haeckel E (1878). Das Protistenreich: Eine populäre Uebersicht über das Formengebiet der niedersten Lebewesen. Leipzig

  • Haeckel E (1887) Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876. In: Report on the scientific results of the voyage of the H.M.S. Challenger, Zoology, 18, i–clxxxviii + 1–1803

  • Haeckel E (1888) Die Radiolarien. Eine Monographie, Berlin 1862–88, Staatsbibliothek zu Berlin – Preußischer Kulturbesitz, Abteilung historische Drucke

  • Haeckel E (1899) Kunstformen der Natur. Verlag des Bibliographischen Instituts, Leipzig

    Book  Google Scholar 

  • Haeckel E, Breidbach O, Hartman R, Eibl-Eibesfeldt I (1998) Art Forms in Nature: The Prints of Ernst Haeckel One Hundred Color Plates (monograph). Prestel, Munich

    Google Scholar 

  • Hart G (2000) Reticulated geodesic constructions. Comput Gr 24:907–910

    Article  Google Scholar 

  • Hopwood N, Chadarevian S (2004) Dimensions of modelling. The third dimension of science, Models, pp 1–15

    Google Scholar 

  • Hufnagel H, Jäger F, Wanlin N (2018) Une approche pluridisciplinaire d’Ernst Haeckel. Arts Savoirs 9:1–14

    Google Scholar 

  • Kaniari A (2013) D’Arcy Thompson’s On Growth and Form and the Concept of Dynamic Form in Postwar Avant-Garde Art Theory. Interdisc Sci Rev 38(1):63–73

    Article  Google Scholar 

  • Khiripet N, Khantuwan W, Jungck JR (2012) Ka-me: a Voronoi image analyzer. Bioinformatics 28(13):1802–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimoto K, Osamu S, Harumasa K, Masahide W, Tomohisa I, Tomohiro I, Naomi H, Makio H (2013) Seasonal carbonate dissolution at the water column in the North Pacific: the evidence from the Micro-focus X-ray CT Technology. ESSAS Annual Science Meeting, Hakodate, Japan. (https://www.youtube.com/watch?v=mWm5q_gkuQ8 )

  • Knoll AH, Benjamin K (2015) Protistan Skeletons: a geologic history of evolution and constraint. In: Hamm C (ed) Evolution of lightweight structures: analyses and technical applications. Biologically-inspired systems, vol 6. Springer, Dordrecht, pp 1–16

    Chapter  Google Scholar 

  • Krausse E (1993) L’lnfluence de Ernst Haeckel sur l’Art nouveau. In: Clair J (ed) L’A.me au corps: Artset sciences 1793-1993. Gallimard/Electa, Paris

    Google Scholar 

  • Krausse E (1995) Ernst Haeckel: Promorphologie und “evolutionistische” ästhetische Theorie - Konzept und Wirkung. In: Engels EM (Hrsg.) Die Rezeption von Evolutionstheorien im 19. Jahrhundert. Frankfurt/M. Suhrkamp Taschenbuch Wissenschaft; 1229, S 347–394

  • Krausse E (2001) Natur als Kunstform - Kunstformen der Natur. Ernst Haeckels Einfluß auf die Architekten des Jugendstils. In: K Buchholz, R Latocha, H Peckmann, K Wolbert (eds), Die Lebensreform. Entwürfe zu Neugestaltung von Leben und Kunst um 1900. Band 1. Darmstadt, Häusser, pp 283–290

  • Lazarus D (1986) Three-dimensional measurement of microfossil morphology. J Paleontol 60(4):960–964

    Article  Google Scholar 

  • Lazarus D (1994) Neptune: a marine micropaleontology database. Math Geol 26(7):817–832

    Article  Google Scholar 

  • Lazarus D (2005) A brief review of radiolarian research. Paläontologische Z 79(1):183–200

    Article  Google Scholar 

  • Lohmann GP (1983) Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. J Int Assoc Math Geol 15(6):659

    Article  Google Scholar 

  • Ludwig D (2013) Mediating objects: scientific and public functions of models in nineteenth-century biology. Hist Philos Life Sci 35(2):139–166

    PubMed  Google Scholar 

  • Maartens A (2017) On Growth and Form in context–an interview with Matthew Jarron. Development 144(23):4199–4202

    Article  CAS  PubMed  Google Scholar 

  • Malcolm Shick J (2008) Toward an aesthetic marine biology. Art J 67(4):62–86

    Article  Google Scholar 

  • Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382(6589):313

    Article  CAS  Google Scholar 

  • Matsuoka A, Yoshino T, Kishimoto N, Ishida N, Kurihara T, Kimoto K, Matsuura S (2012) Exact number of pore frames and their configuration in Mesozoic radiolarian Pantanellium: an application of X-ray micro-CT and layered manufacturing technology to micropaleontology. Mar Micropaleontol 88–89:36–40

    Article  Google Scholar 

  • McCartney K (1988) SILICO: a computer program for the three-dimensional measurement of silicoflagellate skeletons. Comput Geosci 14(1):99–111

    Article  Google Scholar 

  • Meier A (2016) Art Nouveau’s Deep Sea Muse. (https://hyperallergic.com/242794/art-nouveaus-deep-sea-muse/)

  • Merkle A, Boone M, van Loo D (2018) In situ Dynamic X-ray Tomography in the Laboratory. Microsc Microanal 24:998–999

    Article  Google Scholar 

  • Mertins D (2017) Bioconstructivisms 1. In: Sabin JE, Jones PL (eds) LabStudio: design research between architecture and biology. Routledge, Abingdon, pp 3–16

    Chapter  Google Scholar 

  • Miller G, Lowe M (2008) The Natural History Museum Blaschka collections. Hist Biol 20:51–62

    Article  Google Scholar 

  • Moore R (1999) Appreciating natural beauty as natural. J Aesthet Educ 33(3):42–60

    Article  Google Scholar 

  • Morduhai-Boltovskoi DD (1936) Geometry of radiolaria. Univ, Fluchen. Zap. Rostov, p 8

    Google Scholar 

  • Morgan M, Morrison M (1999) Models as Mediators. Cambridge University Press, Cambride

    Book  Google Scholar 

  • Nakaseko K (1959) On Superfamily Liosphaericae (Radiolaria) from Sediments in the Sea Near Antarctica, Part I. Spec Publ Seto Mar Biol Lab 1(2):1–20

    Google Scholar 

  • O’Connor B (1996) Confocal laser scanning microscopy: a new technique for investigating and illustrating fossil Radiolaria. Micropaleontology 42(4):395–402

    Article  Google Scholar 

  • Oliver S, Kuperman A, Coombs N, Lough A, Ozin GA (1995) Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378(6552):47

    Article  CAS  Google Scholar 

  • Ozin GA (1997) Morphogenesis of biomineral and morphosynthesis of biomimetic forms. Acc Chem Res 30(1):17–27

    Article  CAS  Google Scholar 

  • Ozin GA (2000) Panoscopic materials: synthesis over ‘all’length scales. Chem Commun 6:419–432

    Article  Google Scholar 

  • Posner JK, Jungck JR (2012) Polygonal biological patterns: Do two dimensional laws apply to three dimensional curved surfaces? Beloit Biol 32:1–12

    Google Scholar 

  • Proctor R (2006) Architecture from the cell-soul: René Binet and Ernst Haeckel. J Archit 11(4):407–424

    Article  Google Scholar 

  • Proctor R, Breidbach O (2007) Rene Binet: from nature to form. Prestel, New York

    Google Scholar 

  • Reiling H (1998) The Blaschkas’ glass animal models: origins of design. J Glass Stud 40:106–126

    Google Scholar 

  • Richards RJ (2005) The foundation of Ernst Haeckel’s evolutionary project in morphology, aesthetics, and tragedy. In: Dessen P, Kemperiuk M (eds) The many faces of evolution in Europe, c. 1860–1914. Peters, Leuven

    Google Scholar 

  • Richards RJ (2009) The tragic sense of Ernst Haeckel: his scientific and artistic struggles. In: Kort P, Hollein M, Frankfurt SK (eds) Darwin: art and the search for origins. Cologne, Wienand, pp 92–125

    Google Scholar 

  • Richeson DS (2012) Euler's Gem: the polyhedron formula and the birth of topology. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Richardson MK, Jeffery JE (2002) Editorial: Haeckel and modern biology. Theory Biosci 121:247–251

    Article  Google Scholar 

  • Rindfleisch JP, Jungck JR (2010) Spatial point analysis: correlations between geometric and topological data from biological samples. Beloit Biol 30(7):1–75

    Google Scholar 

  • Ritterbush PC (1968) The art of organic forms. Smithsonian Institution Press, Washington, DC, pp 64–65

    Google Scholar 

  • Robert JR (2008) The tragic sense of life: Ernst Haeckel and the struggle over evolutionary thought. University of Chicago Press, Chicago

    Google Scholar 

  • Rossi-Wilcox SM, Whitehouse D (2007) Drawing upon nature: studies for the Blaschkas’ glass models. The Corning Museum of Glass, Corning

    Google Scholar 

  • Sabin JE, Jones PL (2008) Nonlinear systems biology and design: surface design. In: International conference ACADIA proceedings

  • Sabin JE, Jones PL (eds) (2017) LabStudio: design research between architecture and biology. Routledge, Abingdon

    Google Scholar 

  • Sakai T, Suzuki N, Ogane K, Lazarus D, Breidbach O, Bach T (2009) Haeckel’s Messina radiolarian collection housed in the Ernst-Haeckel-Haus. Natl Mus Nat Sci Monogr 40:47–54

    Google Scholar 

  • Scarr G (2010) Simple geometry in complex organisms. J Bodyw Mov Ther 14(4):424–444

    Article  PubMed  Google Scholar 

  • Shaw MD, Szczepanski JZ, Murray SF, Hodge S, Vink CJ (2017) Ideas made glass: Blaschka glass models at Canterbury Museum. Rec Canterb Mus 31:5–84

    Google Scholar 

  • Shirley P, Wyman C (2017) Generating stratified random lines in a square. J Comput Gr Tech 6(2): 48–54. http://jcgt.org/published/0006/02/03/

  • Sigwart JD (2008) Crystal creatures: context for the Dublin Blaschka Congress. Hist Biol 20(1):1–10

    Article  Google Scholar 

  • Stafford BM (1991) Body criticism: imagining the unseen in enlightenment art, science, and medicine. MIT Press, Cambridge, p 84

    Google Scholar 

  • Tsutsui H (2000) Digital characterization of silicoflagellate for numerical taxonomy. Geoinformatics 11(1):35–42

    Article  Google Scholar 

  • Tucker J (2010) Visualizing Darwinian evolution. Vic Stud 52(3):441–448

    Article  Google Scholar 

  • van Embden Andres MV, Turrin M (2009) “Structural DNA.” In: Southwest ACSA conference proceedings. http://www-personal.umich.edu/~pvbuelow/publication/pdf/ACSA_09-embden_turrin_pvb.pdf

  • Waddington CH (1951) The character of biological form. In: Whyte LL (ed) Aspects of form: a symposium on form in nature and art. Publishes, New York, Pelligrini and Cudahy, pp 43–52

    Google Scholar 

  • Wagner RC, John RJ, Denis VL (2015) Sub-micrometer X-ray tomography of radiolarians: computer modeling and skeletonization. Microscopy Today 23(5):18–23

    Article  CAS  Google Scholar 

  • Wertheim M (2007) A field guide to hyperbolic space: an exploration of the intersection of higher geometry and feminine handicraft. Institute for Figuring, Los Angeles

    Google Scholar 

  • Wertheim M (2009) Margaret Wertheim on the beautiful math of coral. TED talk. https://www.ted.com/talks/margaret_wertheim_crochets_the_coral_reef

  • Willmann R, Voss J (2017) The art and science of Ernst Haeckel. Taschen. (See many images from the book at https://www.theguardian.com/books/gallery/2017/nov/01/ernst-haeckel-the-art-of-evolution-in-pictures)

  • Wormer EJ (2018) Ernst Haeckel: Künstler und Wissenschaftler in Personalunion Fantastische Lebensformen. Orthop Rheuma 21(1):60–61

    Article  Google Scholar 

  • Yoshino T, Katsunori Kimoto N, Kishimoto AM, Kurihara T, Ishida N, Matsuura S (2009) A simple mathematical model for chamber arrangement of planktic foraminifera. FORMA 25:87–92

    Google Scholar 

  • Yoshino T, Matsuoka A, Kurihara T, Naoto Ishida N, Kishimoto KK, Matsuura S (2012) Application of Voronoi tessellation of spherical surface to geometrical models for skeleton forms for spherical radiolaria. FORMA 27:45–53

    Google Scholar 

  • Yoshino T, Matsuoka A, Kurihara T, Ishida N, Kishimoto N, Kimoto K, Matsuura S (2015) Polyhedron geometry of skeletons of Mesozoic radiolarian Pantanellium (Géométrie des polyèdres des squelettes des radiolaires mésozoïques du genre Pantanellium). Revue de micropaléontologie 58:51–56

    Article  Google Scholar 

Download references

Acknowledgements

Partial funding for this work was provided by grants to the first author by the Unidel Foundation of the University of Delaware and the Delaware Department of Education Math Science Partnership. Sabbatical support for the first author at the National Institute for Mathematical Biology Synthesis Center (NIMBioS) at the University of Tennessee and at the National Electronics and Computer Technology Center (NECTEC), Bangkok, Thailand, is greatly appreciated. This work would have been impossible except for the incredible assistance provided by Tim Leefeldt. Jordan Posner and J. P. Reindfleisch did some of the scanning electron microscopy and image analysis as student projects. Dr. Doug Boyer at Duke University was especially helpful in building MorpoSource data files for the 3D nanotomography data and 3D print files. Scanner time on a Zeiss XRadia 819 Ultra machine was generously provided by the Zeiss Facility at Thornwood, New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Jungck.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the Special Issue Ernst Haeckel (1834–1919): The German Darwin and his impact on modern biology—Guest Editors: U. Hossfeld, G. S. Levit, U. Kutschera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jungck, J.R., Wagner, R., van Loo, D. et al. Art Forms in Nature: radiolaria from Haeckel and Blaschka to 3D nanotomography, quantitative image analysis, evolution, and contemporary art. Theory Biosci. 138, 159–187 (2019). https://doi.org/10.1007/s12064-019-00289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-019-00289-z

Keywords

  • Haeckel
  • Radiolaria
  • 3D Nanotomography
  • 3D printing
  • Sculpture
  • Topological and geometric analysis
  • Voronoi diagrams
  • Delaunay triangulations
  • Computational geometry
  • Spatial statistics
  • Interdisciplinarity
  • STEAM