Theory in Biosciences

, Volume 137, Issue 1, pp 17–31 | Cite as

Bijective codon transformations show genetic code symmetries centered on cytosine’s coding properties

  • Hervé Seligmann
Original Article


Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce ‘swinger’ RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C’s central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.


Rumer’s transformation Circular codes Abyssal hydrothermal vent 



This work has been carried out thanks to the support of the A*MIDEX Project (No. ANR-11-IDEX-0001-02. funded by the « Investissements d’Avenir » French Government program, managed by the French National Research Agency (ANR) and by the Méditerranée Infection and the National Research Agency under the program “Investissements d’avenir” reference ANR-10-IAHU-03.

Compliance with ethical standards

Conflicts of interest

The author declares no conflict of interest.


  1. Ahmed A, Frey G, Michel CJ (2007) Frameshift signals in genes associated with the circular code. Silico Biol 7(2):155–168Google Scholar
  2. Ahmed A, Frey G, Michel CJ (2010) Essential molecular functions associated with the circular code evolution. J Theor Biol 264(2):613–622PubMedCrossRefGoogle Scholar
  3. Alexe G, Fuku N, Bilal E, Ueno H, Nishigaki Y, Fujita Y, Ito M, Arai Y, Hirose N, Bhanot G, Tanaka M (2007) Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population. Hum Genet 121:347–356PubMedCrossRefGoogle Scholar
  4. Archetti M, Di Giulio M (2007) The evolution of the genetic code took place in an anaerobic environment. J Theor Biol 245(1):169–174PubMedCrossRefGoogle Scholar
  5. Ardell DH (1998) On error minimization in a sequential origin of the standard genetic code. J Mol Evol 47(1):1–13PubMedCrossRefGoogle Scholar
  6. Ardell DH, Sella G (2001) On the evolution of redundancy in genetic codes. J Mol Evol 53(4–5):269–281PubMedCrossRefGoogle Scholar
  7. Arquès DG, Michel CJ (1996) A complementary circular code in the protein coding genes. J Theor Biol 182(1):45–58PubMedCrossRefGoogle Scholar
  8. Arquès DG, Michel CJ (1997) A code in the protein coding genes. Biosystems 44(2):107–134PubMedCrossRefGoogle Scholar
  9. Atkins JF, Steitz JA, Anderson CW, Model P (1979) Binding of mammalian ribosomes to MS2-phage RNA reveals an overlapping gene encoding a lysis function. Cell 18(2):247–256PubMedCrossRefGoogle Scholar
  10. Barthélémy RM, Seligmann H (2016) Cryptic tRNAs in chaetognath mitochondrial genomes? Comput Biol Chem 62:119–132PubMedCrossRefGoogle Scholar
  11. Bashford JD, Tsohantis I, Jarvis PD (1998) A supersymmetric model for the evolution of the genetic code. Proc Natl Acad Sci USA 95:987–992PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bilal E, Rabadan R, Alexe G, Fuku N, Ueno H, Nishigaki Y, Fujita Y, Ito M, Arai Y, Hirose N, Ruckenstein A, Bhanot G, Tanaka M (2008) Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan. PLoS ONE 3(6):e2421PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blazej P, Wnetrzak M, Mackiewicz P (2016) The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization. Biosystems 150:61–72PubMedCrossRefGoogle Scholar
  14. Bloch DO, McArthur B, Widdowson R, Spector D, Guimaraes RC, Smith J (1984) tRNA-rRNA sequence homologies: a model for the origin of a common ancestor molecule, and prospects for its reconstruction. Orig Life 14(1–4):571–578PubMedCrossRefGoogle Scholar
  15. Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT, Passamonti M (2014) A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet 30(12):555–564PubMedCrossRefGoogle Scholar
  16. Capt C, Passamonti M, Breton S (2016) The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA A 27(5):3098–3101Google Scholar
  17. Carter CW Jr, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, Kuhlman B, Ambroggio X, Williams T, Cahndrasekharan SN (2014) The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biol Direct 9:11PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chandrasekaran SN, Yardimci GG, Erdogan O, Roach J, Carter CW (2013) Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases. Mol Biol Evol 30(7):1588–1604PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cusack S (1997) Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 7:881–889PubMedCrossRefGoogle Scholar
  20. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. Atlas Protein Seq Struct 5(s3):345–351Google Scholar
  21. Delarue M (2007) An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13:161–169PubMedPubMedCentralCrossRefGoogle Scholar
  22. Di Giulio M (1989) The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 29:288–293PubMedCrossRefGoogle Scholar
  23. Di Giulio M (1991) On the relationships between the genetic code coevolution hypothesis and the physicochemical hypothesis. Z Naturforsch C 46(3–4):305–312PubMedGoogle Scholar
  24. Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57(6):721–730PubMedCrossRefGoogle Scholar
  25. Di Giulio M (2005) Structuring of the genetic code took place at acidic pH. J Theor Biol 237(2):219–226PubMedCrossRefGoogle Scholar
  26. Di Giulio M (2013) The origin of the genetic code in the ocean abysses: new comparisons confirm old observations. J Theor Biol 333:109–116PubMedCrossRefGoogle Scholar
  27. Di Giulio M (2016) The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory. J Theor Biol 399:134–140PubMedCrossRefGoogle Scholar
  28. Ding SW, Anderson BJ, Haase HR, Symons RH (1994) New overlapping gene encoded by the cucumber mosaic-virus genome. Virology 198(2):593–601PubMedCrossRefGoogle Scholar
  29. Dunnill P (1966) Triplet nucleotide-amino-acid pairing: a stereochemical basis for the division between protein and non-protein amino-acids. Nature 210(5042):1265–1267PubMedCrossRefGoogle Scholar
  30. El Houmami N, Seligmann H (2017) Evolution of nucleotide punctuation marks: from structural to linear signals. Front Genet 8:36PubMedPubMedCentralCrossRefGoogle Scholar
  31. El Soufi K, Michel CJ (2014) Circular code motifs in the ribosome decoding center. Comput Biol Chem 52:9–17PubMedCrossRefGoogle Scholar
  32. El Soufi K, Michel CJ (2015) Circular code motifs near the ribosome decoding center. Comput Biol Chem 59 Pt A:158–176Google Scholar
  33. El Soufi K, Michel CJ (2016) Circular code motifs in genomes of eukaryotes. J Theor Biol 408:198–212PubMedCrossRefGoogle Scholar
  34. Elzanowski A, Ostell J (2016) The genetic codes.
  35. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206PubMedCrossRefGoogle Scholar
  36. Fagan CE, Maehigashi T, Dunkle JA, Miles SJ, Dunham CM (2014) Structural insights into translational recoding by frameshift suppressor tRNASufJ. RNA 20(12):1944–1954PubMedPubMedCentralCrossRefGoogle Scholar
  37. Farabaugh PJ, Bjoerk GR (1999) How translational accuracy influences reading frame maintenance. EMBO J 18(6):1427–1434PubMedPubMedCentralCrossRefGoogle Scholar
  38. Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy RM (2011) Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 6:56PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fimmel E, Danielli A, Strüngmann L (2013) On dichotomic classes and bijections of the genetic code. J Theor Biol 336:221–230PubMedCrossRefGoogle Scholar
  40. Fimmel E, Giannerini S, Gonzalez DL, Strüngmann L (2015a) Circular codes, symmetries and transformations. J Math Biol 70(7):1623–1644PubMedCrossRefGoogle Scholar
  41. Fimmel E, Giannerini S, Gonzalez DL, Strüngmann L (2015b) Dinucleotide circular codes and bijective transformations. J Theor Biol 386:159–165PubMedCrossRefGoogle Scholar
  42. Firth AE, Blitvich BJ, Wills NM, Miller CL, Atkins JF (2010) Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 399(1):153–166PubMedPubMedCentralCrossRefGoogle Scholar
  43. Freeland SJ, Hurst L (1998) The genetic code is one in a million. J Mol Evol 47(3):238–248PubMedCrossRefGoogle Scholar
  44. Freeland SJ, Wu T, Keulmann N (2003) The case for an error minimizing standard genetic code. Orig Life Evol Biosph 33(4–5):457–477PubMedCrossRefGoogle Scholar
  45. Fukuda Y, Nakayama Y, Tomita M (2003) On dynamics of overlapping genes in bacterial genomes. Gene 323:181–187PubMedCrossRefGoogle Scholar
  46. Gillis D, Massar S, Cerf N, Rooman M (2001) Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2(11):49Google Scholar
  47. Goncearenco A, Berezovsky IN (2014) The fundamental tradeoff in genomes and proteomes of prokaryotes established by the genetic code, codon entropy, and physics of nucleic acids and proteins. Biol Direct 9:29PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gonzalez DL, Giannerini S, Rosa R (2011) Circular codes revisited: a statistical approach. J Theor Biol 275(1):21–28PubMedCrossRefGoogle Scholar
  49. Gonzalez DL, Giannerini S, Rosa R (2013) On the origin of the mitochondrial genetic code: towards a unified mathematical framework for the management of genetic information. Nat Preced.  10.1038/npre.2012.7136.1 Google Scholar
  50. Gonzalez DL, Giannerini S, Rosa R (2016) The non-power model of the genetic code: a paradigm for interpreting genomic information. Philos Trans R Soc A 374:20150062CrossRefGoogle Scholar
  51. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4):862–864PubMedCrossRefGoogle Scholar
  52. Guilloux A, Jestin JL (2012) The genetic code and its optimization for kinetic energy conservation in polypeptide chains. Biosystems 109(2):141–144PubMedCrossRefGoogle Scholar
  53. Gumbel M, Fimmel E, Danielli A, Strüngmann L (2015) On models of the genetic code generated by binary dichotomic algorithms. Biosystems 128:9–18PubMedCrossRefGoogle Scholar
  54. Hagervall TG, Tuohy TM, Atkins JF, Björk GR (1993) Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J Mol Biol 232(3):756–765PubMedCrossRefGoogle Scholar
  55. Haig D, Hurst L (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417PubMedCrossRefGoogle Scholar
  56. Herzog H, Darby K, Ball H, Hort Y, Beck-Sickinger A, Shine J (1997) Overlapping gene structure of the human neuropeptide Y receptor subtypes Y1 and Y5 suggests coordinate transcriptional regulation. Genomics 41(3):315–319PubMedCrossRefGoogle Scholar
  57. Hornos JEM, Braggion L, Magini M, Forger M (2004) Symmetry preservation in the evolution of the genetic code. IUBMB Life 56(3):125–130PubMedCrossRefGoogle Scholar
  58. Itzkovitz S, Alon U (2007) The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Res 17(4):405–412PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jestin JL, Soulé C (2007) Symmetries by base substitutions in the genetic code predict 2′2′ or 3′3′ aminoacylation of tRNAs. J Theor Biol 247(2):391–394PubMedCrossRefGoogle Scholar
  60. José MV, Zamudio GS, Morgado ER (2017) A unified model of the standard genetic code. R Soc Open Sci 4(3):160908PubMedPubMedCentralCrossRefGoogle Scholar
  61. Krishnan NM, Seligmann H, Rao BJ (2008) Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications. BMC Genomics 9:48PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lehmann J (2000) Physico-chemical constraints connected with the coding properties of the genetic system. J Theor Biol 202:129–144PubMedCrossRefGoogle Scholar
  63. Martinez-Rodriguez L, Erdogan O, Jimenez-Rodriguez M, Gonzalez-Rivera K, Williams T, Li L, Weinreb V, Collier M, Chandrasekaran SN, Ambroggio X, Kuhlman B, Carter CW (2015) Functional class I and II amino acid-activating enzymes can be coded by opposite strands of the same gene. J Biol Chem 290(32):19710–19725PubMedPubMedCentralCrossRefGoogle Scholar
  64. Meiri S, Bauer AM, Chirio L, Colli GR, Das I, Doan TM, Feldman A, Herrera FC, Novosolov M, Pafilis P, Pincheira-Donoso D, Powney G, Torre-Carvajal O, Uetz P, Van Damme R (2013) Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Global Ecol Biogeogr 22:834–845CrossRefGoogle Scholar
  65. Michel CJ (2013) Circular code motifs in transfer RNAs. Comput Biol Chem 45:17–29PubMedCrossRefGoogle Scholar
  66. Michel CJ (2014) A genetic scale of reading frame coding. J Theor Biol 355:83–94PubMedCrossRefGoogle Scholar
  67. Michel CJ (2015a) An extended genetic scale of reading frame coding. J Theor Biol 365:164–174PubMedCrossRefGoogle Scholar
  68. Michel CJ (2015b) The maximal C(3) self-complementary trinucleotide circular code X in genes of bacteria, eukaryotes, plasmids and viruses. J Theor Biol 380:156–177PubMedCrossRefGoogle Scholar
  69. Michel CJ (2017) The maximal C3 self-complementary trinucleotide circular code X in genes of bacteria, archaea, eukaryotes, plasmids and viruses. Life (Basel) 7(2):E20Google Scholar
  70. Michel CJ, Seligmann H (2014) Bijective transformation circular codes and nucleotide exchanging RNA transcription. Biosystems 118:39–50PubMedCrossRefGoogle Scholar
  71. Moravec J, El Din SB, Seligmann H, Sivan N, Werner YL (1999) Systematics and distribution of the Acanthodactylus pardalis group (Reptilia: Sauria: Lacertidae) in Egypt and Israel. Zool Middle East 17:21–50CrossRefGoogle Scholar
  72. Murgola EJ, Prather NE, Mims BH, Pagel FT, Hijazi KA (1983) Anticodon shift in tRNA: a novel mechanism in missense and nonsense suppression. Proc Natl Acad Sci USA 80(16):4936–4939PubMedPubMedCentralCrossRefGoogle Scholar
  73. O’Connor M (1998) tRNA imbalance promotes -1 frameshifting via near-cognate decoding. J Mol Biol 279(4):727–736PubMedCrossRefGoogle Scholar
  74. Pelc SR, Welton MG (1966) Stereochemical relationship between coding triplets and amino-acids. Nature 209(5026):868–870PubMedCrossRefGoogle Scholar
  75. Petoukhov SV (2017) Genetic coding and united-hypercomplex systems in the models of algebraic biology. Biosystems 158:31–46PubMedCrossRefGoogle Scholar
  76. Phelps SS, Gaudin C, Yoshizawa S, Benitez C, Fourmy D, Joseph S (2006) Translocation of a tRNA with an extended anticodon through the ribosome. J Mol Biol 360(3):610–622PubMedCrossRefGoogle Scholar
  77. Popov O, Segal DM, Trifonov EN (1996) Linguistic complexity of protein sequences as compared to texts of human languages. Biosystems 38(1):65–74PubMedCrossRefGoogle Scholar
  78. Riddle DL, Carbon J (1973) Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat New Biol 242:230–234PubMedCrossRefGoogle Scholar
  79. Rodin SN, Ohno S (1995) 2 types of aminoacyl-transfer-RNA synthetases could be originally encoded by complementary strands of the same nucleic-acid. Orig Life Evol Biosph 25(6):565–589PubMedCrossRefGoogle Scholar
  80. Rodin SN, Ohno S (1997) Four primordial modes of tRNA-synthetase recognition, determined by the (G, C) operational code. Proc Natl Acad Sci USA 94(10):5183–5188PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rodin S, Ohno S, Rodin A (1993) Transfer-RNAs with complementary codons—could they reflect early evolution of discriminative genetic-code adapters. Proc Natl Acad Sci USA 90(10):4723–4727PubMedPubMedCentralCrossRefGoogle Scholar
  82. Root-Bernstein ME, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–158PubMedCrossRefGoogle Scholar
  83. Rumer YB (1966) About the codon systematization in the genetic code. Proc Acad Sci USSR 167:1393–1394Google Scholar
  84. Scherbakov DV, Garber MB (2000) Overlapping genes in bacterial and phage genomes. Mol Biol 34(4):485–495CrossRefGoogle Scholar
  85. Seligmann H (1998) Evidence that minor directional asymmetry is functional in lizard hindlimbs. J Zool (Lond) 245:205–208CrossRefGoogle Scholar
  86. Seligmann H (2000) Evolution and ecology of developmental processes and of the resulting morphology: directional asymmetry in hindlimbs of Agamidae and Lacertidae (Reptilia: Lacertilia). Biol J Linn Soc 69(4):461–481CrossRefGoogle Scholar
  87. Seligmann H (2006) Error propagation across levels of organization: From chemical stability of ribosomal RNA to developmental stability. J Theor Biol 242(1):69–80PubMedCrossRefGoogle Scholar
  88. Seligmann H (2007) Cost minimization of ribosomal frameshifts. J Theor Biol 249(1):162–167PubMedCrossRefGoogle Scholar
  89. Seligmann H (2010a) The ambush hypothesis at the whole-organism level: off frame, ‘hidden’ stops in vertebrate mitochondrial genes increase developmental stability. Comput Biol Chem 34(2):80–85PubMedCrossRefGoogle Scholar
  90. Seligmann H (2010b) Undetected antisense tRNAs in mitochondrial genomes? Biol Direct 5:39PubMedPubMedCentralCrossRefGoogle Scholar
  91. Seligmann H (2010c) Avoidance of antisense, antiterminator tRNA anticodons in vertebrate mitochondria. Biosystems 101(1):42–50PubMedCrossRefGoogle Scholar
  92. Seligmann H (2010d) Do anticodons of misacylated tRNAs preferentially mismatch codons coding for the misloaded amino acid? BMC Mol Biol 11:41PubMedPubMedCentralCrossRefGoogle Scholar
  93. Seligmann H (2010e) Positive correlations between molecular and morphological rates of evolution. J Theor BiolGoogle Scholar
  94. Seligmann H (2011a) Two genetic codes, one genome: frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems 105(3):271–285PubMedCrossRefGoogle Scholar
  95. Seligmann H (2011b) Pathogenic mutations in antisense mitochondrial tRNAs. J Theor Biol 269(1):287–296PubMedCrossRefGoogle Scholar
  96. Seligmann H (2011c) Error compensation of tRNA misacylation by codon-anticodon mismatch prevents translational amino acid misinsertion. Comput Biol Chem 35(2):81–95PubMedCrossRefGoogle Scholar
  97. Seligmann H (2011d) Left-handed Sphenodons grow more slowly. In: Berhardt LV (ed.) Advances in medicine and biology, vol 24, Chap. 4, pp 185–206Google Scholar
  98. Seligmann H (2012a) An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: antisense antitermination tRNAs UAR insert serine. J Theor Biol 298:51–76PubMedCrossRefGoogle Scholar
  99. Seligmann H (2012b) Coding constraints modulate chemically spontaneous mutational replication gradients in mitochondrial genomes. Curr Genomics 13(1):37–54PubMedPubMedCentralCrossRefGoogle Scholar
  100. Seligmann H (2012c) Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case. Comput Biol Chem 41:18–34PubMedCrossRefGoogle Scholar
  101. Seligmann H (2012d) Overlapping genes coded in the 3′-to-5′-direction in mitochondrial genes and 3′-to-5′ polymerization of non-complementary RNA by an ‘invertase’. J Theor Biol 315:38–52PubMedCrossRefGoogle Scholar
  102. Seligmann H (2012e) Putative mitochondrial polypeptides coded by expanded quadruplet codons, decoded by antisense tRNAs with unusual anticodons. Biosystems 110(2):84–106PubMedCrossRefGoogle Scholar
  103. Seligmann H (2013a) Putative protein-encoding genes within mitochondrial rDNA and the D-Loop region. Chapter 4. In: Lin Z, Liu W (eds) Ribosomes: molecular structure, role in biological functions and implications for genetic diseases, pp 67–86Google Scholar
  104. Seligmann H (2013b) Triplex DNA:RNA, 3′-to-5′ inverted RNA and protein coding in mitochondrial genomes. J Comput Biol 20(9):660–671PubMedCrossRefGoogle Scholar
  105. Seligmann H (2013c) Polymerization of non-complementary RNA: systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes. Biosystems 111(3):156–174PubMedCrossRefGoogle Scholar
  106. Seligmann H (2013d) Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes. J Theor Biol 324:1–20PubMedCrossRefGoogle Scholar
  107. Seligmann H (2014a) Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts. Biosystems 125:22–31PubMedCrossRefGoogle Scholar
  108. Seligmann H (2014b) Species radiation by DNA replication that systematically exchanges nucleotides? J Theor Biol 363:216–222PubMedCrossRefGoogle Scholar
  109. Seligmann H (2015a) Phylogeny of genetic codes and punctuation codes within genetic codes. Biosystems 129:36–43PubMedCrossRefGoogle Scholar
  110. Seligmann H (2015b) Systematic exchanges between nucleotides: Genomic swinger repeats and swinger transcription in human mitochondria. J Theor Biol 348:70–77CrossRefGoogle Scholar
  111. Seligmann H (2015c) Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A ↔ T + C ↔ G in the mitogenome of Kamimuria wangi. Mitochondrial DNA A 27(4):2440–2446Google Scholar
  112. Seligmann H (2015d) Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides. J Theor Biol 387:154–165PubMedCrossRefGoogle Scholar
  113. Seligmann H (2015e) Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: case studies. Biosystems 135:1–8PubMedCrossRefGoogle Scholar
  114. Seligmann H (2016a) Systematically frameshifting by deletion of every 4th or 4th and 5th nucleotides during mitochondrial transcription: RNA self-hybridization regulates delRNA expression. Biosystems 142–143:43–51PubMedCrossRefGoogle Scholar
  115. Seligmann H (2016b) Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides. J Theor Biol 399:84–91PubMedCrossRefGoogle Scholar
  116. Seligmann H (2016c) Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons. Biosystems 140:38–48PubMedCrossRefGoogle Scholar
  117. Seligmann H (2016d) Natural chymotrypsin-like-cleaved human mitochondrial peptides confirm tetra-, pentacodon, non-canonical RNA translations. Biosystems 147:78–93PubMedCrossRefGoogle Scholar
  118. Seligmann H (2016e) Unbiased mitoproteome analyses confirm non-canonical RNA, expanded codon translations. Comput Struct Biotechnol J 14:391–403PubMedPubMedCentralCrossRefGoogle Scholar
  119. Seligmann H (2016f) Chimeric mitochondrial peptides from contiguous regular and swinger RNA. Comput Struct Biotechnol J 14:283–297PubMedPubMedCentralCrossRefGoogle Scholar
  120. Seligmann H (2017a) Natural mitochondrial proteolysis confirms transcription systematically exchanging/deleting nucleotides, peptides coded by expanded codons. J Theor Biol 414:76–90PubMedCrossRefGoogle Scholar
  121. Seligmann H (2017b) Reviewing evidence for systematic transcriptional deletions, nucleotide exchanges, and expanded codons, and peptide clusters in human mitochondria. Biosystems 160:10–24PubMedCrossRefGoogle Scholar
  122. Seligmann H, Amzallag GN (2002) Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code. Naturwissenschaften 89(12):542–551PubMedGoogle Scholar
  123. Seligmann H, Krishnan NM (2006) Mitochondrial replication origin stability and propensity of adjacent tRNA genes to form putative replication origins increase developmental stability in lizards. J Exp Zool B Mol Dev Evol 306B(5):433–449CrossRefGoogle Scholar
  124. Seligmann H, Labra A (2013) Tetracoding increases with body temperature in Lepidosauria. Biosystems 114(3):155–163PubMedCrossRefGoogle Scholar
  125. Seligmann H, Pollock DD (2004) The ambush hypothesis: hidden stop codons prevent off-frame gene reading. DNA Cell Biol 23(10):701–705PubMedCrossRefGoogle Scholar
  126. Seligmann H, Raoult D (2016) Unifying view of stem-loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses. Curr Opin Microbiol 31:1–8PubMedCrossRefGoogle Scholar
  127. Seligmann H, Warthi G (2017) Genetic code optimization for cotranslational protein folding: codon directional asymmetry correlates with antiparallel betasheets, tRNA synthetase classes. Comput Struct Biotechnol J 12(15):412–424CrossRefGoogle Scholar
  128. Seligmann H, Beiles A, Werner YL (2003a) Avoiding injury and surviving injury: two coexisting evolutionary strategies in lizards. Biol J Linn Soc 78(3):307–324CrossRefGoogle Scholar
  129. Seligmann H, Beiles A, Werner YL (2003b) More injuries in left-footed individual lizards and Sphenodon. J Zool (Lond) 260:129–144CrossRefGoogle Scholar
  130. Seligmann H, Moravec J, Werner YL (2008) Morphological, functional and evolutionary aspects of tail autotomy and regeneration in the ‘living fossil’ Sphenodon (Reptilia: Rhynchocephalia). Biol J Linn Soc 93(4):721–743CrossRefGoogle Scholar
  131. Sella G, Ardell DH (2006) The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J Mol Evol 63(3):297–313PubMedCrossRefGoogle Scholar
  132. Shsherbak VI (1989) Rumer’s rule and transformation in the context of the co-operative symmetry of the genetic code. J Theor Biol 1139(2):271–276CrossRefGoogle Scholar
  133. Shu JJ (2017) A new integrated symmetrical table for genetic codes. Biosystems 151:21–26PubMedCrossRefGoogle Scholar
  134. Sojo V, Herschy B, Whicher A, Camprubi E, Lane E (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16(2):181–197PubMedCrossRefGoogle Scholar
  135. Tanaka M, Cabrera M, Gonzalez M, Larruga M, Takeyasu T, Fuku N, Guo LJ, Hirose R, Fujita Y, Kurata M, Shinoda K, Umetsu K, Yamada Y, Oshida Y, Sato Y, Sattori N, Mizuno Y, Arai Y, Hirose N, Ohta S, Ogawa O, Tanaka Y, Kawamori R, Shamoto-Nagai M, Maruyama W, Shimokata H, Suzuki R, Shimodaira H (2004) Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Res 14:1832–1850PubMedPubMedCentralCrossRefGoogle Scholar
  136. Taylor FJ, Coates D (1989) The code within codons. Biosystems 22(3):177–187PubMedCrossRefGoogle Scholar
  137. Trifonov EN (2004) The triplet code from first principles. J Biomol Struct Dyn 22(1):1–11PubMedCrossRefGoogle Scholar
  138. Trifonov EN (2008) Tracing life back to elements. Phys Life Rev 5(2):121–132CrossRefGoogle Scholar
  139. Tuohy TM, Thompson S, Gesteland RF, Atkins JF (1992) Seven, eight and nine-membered anticodon loop mutants of tRNA(2Arg) which cause +1 frameshifting. Tolerance of DHU arm and other secondary mutations. J Mol Biol 228(4):1042–1054PubMedCrossRefGoogle Scholar
  140. Wagner A (2000) The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics 154(3):1389–1401PubMedPubMedCentralGoogle Scholar
  141. Walker SE, Fredrick K (2006) Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons. J Mol Biol 360(3):599–609PubMedPubMedCentralCrossRefGoogle Scholar
  142. Williams BAP, Slamovits CH, Patron NJ, Fast NM, Keeling PJ (2005) A high frequency of overlapping gene expression in compacted eukaryotic genomes. Proc Natl Acad Sci USA 102(31):10936–10941PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wong JT (1980) Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc Natl Acad Sci USA 77(2):1083–1086PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wong JT (2005) Coevolution theory of the genetic code at age thirty. BioEssays 27:416–425PubMedCrossRefGoogle Scholar
  146. Yampolsky LY, Stoltzfus A (2005) The exchangeability of amino acids in proteins. Genetics 170(4):1459–1472PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: the escaped triplet theory. Annu Rev Biochem 74:179–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198, UMR 6236Université de la MéditerranéeMarseilleFrance
  2. 2.Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations