Skip to main content

Diversity and survival of artificial lifeforms under sedimentation and random motion

Abstract

Cellular automata are often used to explore the numerous possible scenarios of what could have occurred at the origins of life and before, during the prebiotic ages, when very simple molecules started to assemble and organise into larger catalytic or informative structures, or to simulate ecosystems. Artificial self-maintained spatial structures emerge in cellular automata and are often used to represent molecules or living organisms. They converge generally towards homogeneous stationary soups of still-life creatures. It is hard for an observer to believe they are similar to living systems, in particular because nothing is moving anymore within such simulated environments after few computation steps, because they present isotropic spatial organisation, because the diversity of self-maintained morphologies is poor, and because when stationary states are reached the creatures are immortal. Natural living systems, on the contrary, are composed of a high diversity of creatures in interaction having limited lifetimes and generally present a certain anisotropy of their spatial organisation, in particular frontiers and interfaces. In the present work, we propose that the presence of directional weak fields such as gravity may counter-balance the excess of mixing and disorder caused by Brownian motion and favour the appearance of specific regions, i.e. different strata or environmental layers, in which physical–chemical conditions favour the emergence and the survival of self-maintained spatial structures including living systems. We test this hypothesis by way of numerical simulations of a very simplified ecosystem model. We use the well-known Game of Life to which we add rules simulating both sedimentation forces and thermal agitation. We show that this leads to more active (vitality and biodiversity) and robust (survival) dynamics. This effectively suggests that coupling such physical processes to reactive systems allows the separation of environments into different milieux and could constitute a simple mechanism to form ecosystem frontiers or elementary interfaces that would protect and favour the development of fragile auto-poietic systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. This term, used by Rennard (2008), refers obviously to our wishes to give life to amorphous matter, but it probably also hides additional meanings: the facts that such models have a purpose (not only to “be themselves” but to serve our understanding), that we control them and that they are designed as reflects of our own limited knowledge of what is life.

References

  • Abbas L, Glade N, Demongeot J (2009) Synchrony in reaction-diffusion models of morphogenesis : applications to curvature-dependent proliferation and zero-diffusion front waves. Phil Trans Roy Soc Lond A 367:4829–4862

    CAS  Article  Google Scholar 

  • Adamatzky A (2017) Thirty seven things to do with live slime mould. In: Adamatzky A (ed) Advances in Unconventional Computing, vol 23. Springer International Publishing, pp 709–738

  • Adami C (1995) On modelling life. Artif Life 367:4829–4862

    Google Scholar 

  • Adami C (1998) An introduction to artificial life. Springer-Verlag, New York Inc

    Book  Google Scholar 

  • Barge LM, Cardoso SSS, Cartwright JHE, Cooper GJT, Cronin L, Wit AD, Doloboff IJ, Escribano B, Goldstein RE, Haudin F, Jones DEH, Mackay AL, Maselko J, Pagano JJ, Pantaleone J, Russell MJ, Sainz-Díaz CI, Steinbock O, Stone DA, Tanimoto Y, Thomas NL (2015) From chemical gardens to chemobrionics. Chem Rev 115(16):8652–8703

    CAS  Article  PubMed  Google Scholar 

  • Bec L (2008) L’art est le vivant. La Découverte, Paris

    Google Scholar 

  • Bedau MA (1999) Can unrealistic computer models illuminate theoretical biology? In: Proceedings of the 1999 International Genetic and Evolutionary Computation Conference, GECCO 1999, pp 20–23

  • Berlekamp ER, Conway JH, Guy RK (1982) Winning ways. Academic Press, New York

    Google Scholar 

  • Cairns-Smith AG (1990) Seven Clues to the Origin of Life: a scientific detective story. Cambridge University Press, Cambridge

  • Castets V, Dulos E, Boissonade J, Kepper PD (1990) Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern. Phys Rev Lett 64:2953–2956

    CAS  Article  PubMed  Google Scholar 

  • Čejková J, Novák M, Štěpánek F, Hanczyc MM (2014) Dynamics of chemotactic droplets in salt concentration gradients. Langmuir 30(40):11,937–11,944

  • Cornish-Bowden A, Cárdenas ML (2008) Self-organization at the origin of life. J Theor Biol 252(3):411–418

    Article  PubMed  Google Scholar 

  • Courbet A, Molina F, Amar P (2015) Computing with synthetic protocells. Acta Biotheor 63:309–323

    Article  PubMed  Google Scholar 

  • Dowek G (2011) Proofs and algorithms: an introduction to logic and computability. Springer, Berlin

    Book  Google Scholar 

  • Feitelson DG (2006) Experimental computer science : the need for a cultural change. http://www.cs.huji.ac.il/~feit/papers/exp05.pdf

  • Gardner M (1970) Mathematical games. The fantastic combinations of john conway’s new solitaire game “life”. Sci Am 223:120–123

    Article  Google Scholar 

  • Gonzàlez AE (2006) Stratification of colloidal aggregation coupled to sedimentation. Phys Rev E 74(061):403

    Google Scholar 

  • Grassé PP (1959) La reconstruction du nid et les coordinations inter-individuelles chez bellicositermes natalensis et cubitermes sp. la théorie de la stigmergie : Essai d’interprétation du comportement des termites constructeurs. Ins Soc 6:41–80

    Article  Google Scholar 

  • Ho MW, Ulanowicz R (2005) Sustainable systems as organisms? Biosystems 82:39–51

    Article  PubMed  Google Scholar 

  • Hunding A, Képès F, Lancet D, Minsky A, Norris V, Raine D, Sriram K, Root-Bernstein R (2006) Compositional complementarily and prebiotic ecology in the origin of life. Bioessays 28:399–412

    CAS  Article  PubMed  Google Scholar 

  • Janson AL (2007) Evolution de la biodiversité benthique des vasières subditales de l’estuaire de la seine en réponse à la dynamique sédimentaire. de l’approche descriptive à l’approche fonctionnelle. PhD thesis, Université de Rouen

  • Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The miller volcanic spark discharge experiment. Science 322:404

    CAS  Article  PubMed  Google Scholar 

  • Kagan JL, Peleg S, Meisels E, Avnir D (1983) Spatial structures induced by chemical reactions at interfaces: survey of some possible models and computerized pattern analysis. In: Jäger W, Murray JD (eds) Lecture Notes in Biomathematics. Proceedings of the Workshop Modelling of Patterns in Space and Time, Heidelberg, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, pp 146–156

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Statist Assn 53:457–481

    Article  Google Scholar 

  • Kauffman S (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    CAS  Article  PubMed  Google Scholar 

  • Langton CG (1984) Self-reproduction in cellular automata. Phys D 10:135–144

    Article  Google Scholar 

  • Langton CG (1986) Studying artificial life with cellular automata. Phys D 22:120–149

    Article  Google Scholar 

  • Leduc S (1911) The mechanism of life. W. Heinemann, London

    Google Scholar 

  • MacLennan BJ (2014) Molecular coordination of hierarchical self-assembly. Nano Commun Netw J 3:116–128

    Article  Google Scholar 

  • MacLennan BJ (2015) The morphogenetic path to programmable matter. Proc IEEE 103:1226–1232

    Article  Google Scholar 

  • Mange D, Stauffer A, Petraglio E, Tempesti E (2004) Artificial cell division. Biosystems 76:157–167

    Article  PubMed  Google Scholar 

  • Margolis RL, Wilson L (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13

  • Martin E, Silver SA (2009) Game of life’s lexicon (update by e. martin). http://www.bitstorm.org/gameoflife/lexicon/

  • Mason OU, Nakagawa T, Rosner M, Nostrand JDV, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ (2010) First investigation of the microbiology of the deepest layer of ocean crust. PLOS One 5(e15):399

    Google Scholar 

  • Maturana H, Varela F (1988) The tree of knowledge. New Science Library, Shambhala, Boston

    Google Scholar 

  • Maturana H, Varela FJ (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5:187–196

    Article  Google Scholar 

  • Müller SC, Venzl G (1983) Pattern formation in precipitation processes. In: Jäger W, Murray JD (eds) Lecture Notes in Biomathematics, Proceedings of the Workshop Modelling of Patterns in Space and Time, Heidelberg. Springer Verlag, Berlin, Heidelberg, New York, Tokyo, pp 254–278

  • Norris V, Hunding A, Képès F, Lancet D, Minsky A, Raine D, Root-Bernstein R, Sriram K (2007) Question 7: the first units of life were not simple cells. Orig Life Evol Biosph 37:429–443

    Article  PubMed  Google Scholar 

  • Pattee HH (2015) Cell phenomenology: the first phenomenon. Prog Biophys Mol Biol 1–8

  • Ray TS (1994) Evolution, complexity, entropy and artificial reality. Phys D 75:239–263

    Article  Google Scholar 

  • Rennard JP (2002) Vie artificielle. Où la vie rencontre l’informatique. Vuibert Informatique, Paris (in french)

  • Rennard JP (2004) Perspectives for strong artificial life. In: Castro LD, von Zuben F (ed) Recent developments in biologically inspired computing, IGP, pp 301–318

  • Rennard JP (2008) Golem numérique, vie et vie artificielle. hal-00416207 pp 1–13 (in french)

  • Ricotta C (2007) A semantic taxonomy for diversity measures. Acta Biotheor 55(1):23–33

    Article  PubMed  Google Scholar 

  • Ronald EMA, Sipper M, Capcarrère MS (1999) Testing for emergence in artificial life. In: Proceedings of the 5th European Conference on Advances in Artificial Life. Springer-Verlag, London, UK, ECAL ’99, pp 13–20

  • Rothemund PWK, Ekani-Nkodo A, Papadakis N, Kumar A, Fygenson DK, Winfree E (2004) Design and characterization of programmable DNA nanotubes. J Am Chem Soc 126(50):16,344–16,352

  • Ruff SW, Farmer JD (2016) Silica deposits on mars with features resembling hot spring biosignatures at el tatio in chile. Nat Comm 7(13554)

  • Sayer RMP (2007) Self-organizing proto-replicators and the origin of life. Biosystems 90:121–138

    CAS  Article  PubMed  Google Scholar 

  • Sims K (1994a) Evolving 3d morphology and behavior by competition. In: Brooks M (eds) Artificial Life IV Proceedings. MIT Press, pp 28–39

  • Sims K (1994b) Evolving virtual creatures. In: Computer Graphics, Siggraph 94 Proceedings, pp 15–22

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Ann Rev 41:311–354

    Google Scholar 

  • Turing AM (1952) On the chemical basis of morphogenesis. Phil Trans Roy Soc Lond B 237:37–72

    Article  Google Scholar 

  • Ulanowicz RE (2001) Information theory in ecology. Comput Chem 25:393–399

    CAS  Article  PubMed  Google Scholar 

  • Vanag VK, Epstein IR (2003) Segmented spiral waves in a reaction-diffusion system. Proc Natl Acad Sci USA 100(25):14,635–14,638

  • Varela FJ (1989) Autonomie et connaissance: Essai sur le vivant. Seuil, Paris

    Google Scholar 

  • Varenne F, Chaigneau P, Petitot J, Doursat R (2015) Programming the emergence in morphogenetically architected complex systems. Acta Biotheor 63:295–308

    Article  PubMed  Google Scholar 

  • Varetto L (1993) Typogenetics: an artificial genetic system. J Theor Biol 160:182–205

    Article  Google Scholar 

  • Varetto L (1998) Studying artificial life with a cellular automaton. J Theor Biol 193:257–285

    CAS  Article  PubMed  Google Scholar 

  • Vavilin VA, Zhabotinsky AM, Krupyanko VI (1967a) Dependence of the behaviour of an oscillating chemical reaction on the concentration of the initial reagents ii. oxidation of bromomalonic acid. In: Frank GM (ed) Oscillating processes in biological and chemical systems, Science Publ., Moscow

  • Vavilin VA, Zhabotinsky AM, Yaguzhinsky LS (1967b) Dependence of the behaviour of an oscillating chemical reaction on the concentration of the initial reagents i. oxidation of malonic acid. In: Frank GM (ed) Oscillating processes in biological and chemical systems, Science Publ., Moscow

  • Ventrella J (2005) Gravity tetris. http://www.ventrella.com/ideas/gravitytetris/gravitytetris.html

  • Wentworth TD (1942) On growth and form. Cambridge at the University Press, Cambridge

    Google Scholar 

  • Whitfield J (2009) Origin of life: Nascence man. Nature 459:316–319

    CAS  Article  PubMed  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108

    Article  Google Scholar 

  • Zeng W, Thomas GL, Glazier JA (2004) Non-turing stripes and spots: a novel mechanism for biological cell clustering. Phys A 341:482–494

    Article  Google Scholar 

  • Zhabotinskii AM (1974) Kontsentratsionnye Avtokolebaniya [Russian] (Concentration Self-Oscillations). Nauka, Moscow

    Google Scholar 

  • Zhabotinsky AM, Zaikin AN (1973) Autowave processes in a distributed chemical system. J Theor Biol 40:45–61

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Glade.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glade, N., Bastien, O. & Ballet, P. Diversity and survival of artificial lifeforms under sedimentation and random motion. Theory Biosci. 136, 153–167 (2017). https://doi.org/10.1007/s12064-017-0254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-017-0254-1

Keywords

  • Cellular automata
  • Gravity
  • Sedimentation
  • Thermal noise
  • Survival
  • Biodiversity
  • Interface
  • Origins of life
  • Prebiotic chemistry