Abraham VM (1980) Linearizing quadratic transformations in genetic algebras. Proc Lond Math Soc 40:346–363
Article
Google Scholar
Abraham VM (1980) The genetic algebra of polyploids. Proc Lond Math Soc 3(40):385–429
Article
Google Scholar
Andrade R, Catalan A, Labra A (1994) The identity \(\left( x^{2}\right) ^{2}=\varpi \left( x\right) x^{3}\) in baric algebras. In: Gonzalez S (Ed.) Non-associative algebra and its applications. Math. and its Applic., Springer Science+Business Media, B.V
Al’pin YA, Koreshkov NA (2000) On the simultaneous triangulability of matrices. Math Notes 68(5)
Bürger, R (2000) The mathematical theory of selection, recombination, and mutation. Wiley Series in mathematical and computational biology. Wiley, Chichester, pp xii+409
Etherington IMH (1939) Genetic algebras. Proc R Soc Edinb 59:242–258
Article
Google Scholar
Etherington IMH (1941) Quart J Math (Oxford) 12:1–8
Article
Google Scholar
Etherington IMH (1941) Non-associative algebra and the symbolism of genetics. Proc R Soc Edinb B 61:24–42
Google Scholar
Ewens WJ (2004) Mathematical population genetics. I. Theoretical introduction. Second edition. Interdisciplinary applied mathematics, vol 27. Springer, New York
Fran F, Irawati I (2015) The condition for a genetic algebra to be a special train algebra. J Multidiscip Eng Sci Technol 2(6):1496–1500
Google Scholar
Ganikhodzhaev R, Mukhamedov F, Rozikov U (2011) Quadratic stochastic operators and processes: results and open problems. Infin Dimens Anal Quantum Probab Relat Top 14(2):279–335
Article
Google Scholar
Gonshor H (1960) Special train algebras arising in genetics. Proc Edinb Math Soc 2(12):41–53
Article
Google Scholar
Gonshor H (1965) Special train algebras arising in genetics, II. Proc Edinb Math Soc 2(14):333–338
Article
Google Scholar
Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge
Book
Google Scholar
Holgate P (1965) Genetic algebras associated with polyploidy. Proc Edinb Math Soc 15:1–9
Article
Google Scholar
Holgate P (1981) Population algebras. J R Stat Soc B 43(1):1–19
Google Scholar
Holgate P (1989) Some infinite-dimensional genetics algebras. Algèbres génétiques (Montpellier, 1985), 35–45, Cahiers Math Montpellier, 38, Univ. Sci. Tech. Languedoc, Montpellier
Karlin S (1984) Mathematical models, problems, and controversies of evolutionary theory. Bull Am Math Soc (N.S.) 10(2):221–274
Article
Google Scholar
Kesten H (1970) Quadratic transformations: a model for population growth. I (and II). Adv Appl Probab, Vol. 2, No. 1 (resp. 2), 1–82, (resp. 179–228)
Kesten H (1971) Some nonlinear stochastic growth models. Bull Am Math Soc 77(4)
Kingman JFC. Mathematics of genetic diversity. CBMS-NSF Regional Conference Series in Applied Mathematics, 34. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1980, pp vii+70. ISBN: 0-89871-166-5
Kingman JFC (1961) A matrix inequality. Quart J Math Oxford Ser 12:78–80
Article
Google Scholar
Lyubich YI (1992) Mathematical structures in population genetics. Vol 22 of Biomathematics, Springer, Berlin
McCoy NH (1934) On quasi-commutative matrices. Trans Am Math Soc 36(2):327–340
Article
Google Scholar
McCoy NH (1936) On the characteristic roots of matric polynomials. Bull Am Math Soc 42(8):592–600
Article
Google Scholar
Reed ML (1997) Algebraic structure of genetic inheritance. (New Ser) Am Math Soc 34(2):107–130
Article
Google Scholar
Weissing FJ, van Boven M (2001) Selection and segregation distortion in a sex-differentiated population. Theor Popul Biol 60(4):327–341
CAS
Article
PubMed
Google Scholar
Wörz-Busekros A (1980) Algebras in genetics, vol 36., Lecture Notes in Biomathematics, Springer, Berlin-Heidelberg-New York
Wörz-Busekros A (1981) Relationship between genetic algebras and semicommutative matrices. Linear Algebra Appl 39:111–123
Article
Google Scholar