Theory in Biosciences

, Volume 135, Issue 3, pp 131–161 | Cite as

Defining and simulating open-ended novelty: requirements, guidelines, and challenges

  • Wolfgang Banzhaf
  • Bert Baumgaertner
  • Guillaume Beslon
  • René Doursat
  • James A. Foster
  • Barry McMullin
  • Vinicius Veloso de Melo
  • Thomas Miconi
  • Lee Spector
  • Susan Stepney
  • Roger White
Original Paper

Abstract

The open-endedness of a system is often defined as a continual production of novelty. Here we pin down this concept more fully by defining several types of novelty that a system may exhibit, classified as variation, innovation, and emergence. We then provide a meta-model for including levels of structure in a system’s model. From there, we define an architecture suitable for building simulations of open-ended novelty-generating systems and discuss how previously proposed systems fit into this framework. We discuss the design principles applicable to those systems and close with some challenges for the community.

Keywords

Modelling and simulation Open-ended evolution Novelty Innovation Major transitions Emergence 

References

  1. Adami C, Brown CT (1994) Evolutionary learning in the 2D artificial life system avida. In: Artificial life IV: proceedings of the 4th international workshop on the synthesis and simulation of living systems, pp 377–381Google Scholar
  2. Amar P, Legent G, Thellier M, Ripoll C, Bernot G, Nystrom T, Saier M, Norris V (2008) A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Syst Biol 2:27CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andrews PS, Polack FAC, Sampson AT, Stepney S, Timmis J (2010) The CoSMoS process, version 0.1: a process for the modelling and simulation of complex systems. Technical Report YCS-2010-453, Department of Computer Science, University of YorkGoogle Scholar
  4. Andrews PS, Stepney S, Hoverd T, Polack FA, Sampson AT, Timmis J (2011) CoSMoS process, models, and metamodels. In: CoSMoS 2011: proceedings of the 2011 workshop on complex systems modelling and simulation, pp 1–14Google Scholar
  5. Andrews PS, Stepney S, Timmis J (2012) Simulation as a scientific instrument. In: Proceedings of the 2012 workshop on complex systems modelling and simulation, Orleans, France, pp 1–10Google Scholar
  6. Anderson PW (1972) More is different. Sci 177:393–396Google Scholar
  7. Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic programming: an introduction. Morgan Kaufmann, San Francisco, CA, USACrossRefGoogle Scholar
  8. Banzhaf W, Yamamoto L (2015) Artificial chemistries. MIT Press, Cambridge, MA, USAGoogle Scholar
  9. Baptista T, Costa E (2013) Step evolution: improving the performance of open-ended evolution simulations. In: IEEE symposium on artificial life, Singapore 2013, pp 52–59. IEEEGoogle Scholar
  10. Barricelli NA (1962) Numerical testing of evolution theories: part i theoretical introduction and basic tests. Acta Biotheor 16(1–2):69–98CrossRefGoogle Scholar
  11. Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14:827–839CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247CrossRefPubMedGoogle Scholar
  13. Batut B, Knibbe C, Marais G, Daubin V (2014) Reductive genome evolution at both ends of bacterial population size spectrum. Nat Rev Microbiol 12(12):841–850CrossRefPubMedGoogle Scholar
  14. Baugh D (2015) Implementing von Neumann’s architecture for machine self reproduction within the tierra artificial life platform to investigate evolvable genotype-phenotype mappings. PhD, Dublin City University. School of Electronic EngineeringGoogle Scholar
  15. Bedau MA (1991) Can biological teleology be naturalized? J Philos 88:647–655CrossRefGoogle Scholar
  16. Bedau MA (1996) The nature of life. In: Boden M (ed) The philosophy of artificial life. Oxford University Press, Oxford, UK, pp 332–357Google Scholar
  17. Bedau MA (1999) Can unrealistic computer models illuminate theoretical biology? In: Proceedings of the 1999 genetic and evolutionary computation conference, workshop companion, pp 20–23Google Scholar
  18. Bedau MA, Packard NH (1992) Measurement of evolutionary activity, teleology, and life. In: Langton C, Taylor C, Farme D, Rasmussen S (eds) Artificial life II. Addison-Wesley, Reading, MA, USA, pp 431–461Google Scholar
  19. Bedau MA, Snyder E, Packard NH (1998) A classification of long-term evolutionary dynamics. In: ALife IV, MIT Press, Cambridge, MA, USA, pp 228–237Google Scholar
  20. Bedau MA, McCaskill JS, Packard NH, Rasmussen S, Adami C, Green DG, Ikegami T, Kaneko K, Ray TS (2000) Open problems in artificial life. Artif Life 6(4):363–376CrossRefPubMedGoogle Scholar
  21. Bentley PJ (2003) Evolving fractal gene regulatory networks for robot control. In: ECAL 2003, vol 2801 of LNCS. Springer, Berlin, Germany, pp 753–762Google Scholar
  22. Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, volume 2: games in particular. Academic Press, New York, NY, USAGoogle Scholar
  23. Bianco R, Nolfi S (2004) Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assemble and self-reproduce. Connect Sci 16(4):227–248CrossRefGoogle Scholar
  24. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906CrossRefPubMedPubMedCentralGoogle Scholar
  25. Buss L (1987) The evolution of individuality. Princeton University Press, Princeton, NJ, USAGoogle Scholar
  26. Channon A (2001) Passing the ALife test: activity statistics classify evolution in Geb as unbounded. In: ECAL ’01: proceedings of the 6th European conference on artificial life. Springer, Berlin, Germany, pp 417–426Google Scholar
  27. Channon A (2003) Improving and still passing the ALife test: component-normalised activity statistics classify evolution in Geb as unbounded. In: Proceedings of artificial life VIII. MIT Press, Cambridge, MA, USA, pp 173–181Google Scholar
  28. Channon AD, Damper RI (2000) Towards the evolutionary emergence of increasingly complex advantageous behaviours. Int J Syst Sci 31(7):843–860CrossRefGoogle Scholar
  29. Chomsky N (1956) Three models for the description of language. IRE Trans Inf Theory 2:113–124CrossRefGoogle Scholar
  30. Church A (1936) An unsolvable problem of elementary number theory. Am J Math 58:345–363CrossRefGoogle Scholar
  31. Cook SA (1971) On the complexity of theorem-proving procedures. In: Proceedings ACM symposium on theory of computing, pp 151–158Google Scholar
  32. Craver C (2007) A field guide to levels. In: Explaining the brain: mechanisms and the Mosaic Unity of Neuroscience, chapter 5. Clarendon Press, OxfordGoogle Scholar
  33. Dewdney AK (1987) Computer recreations: a program called mice nibbles its way to victory at the first core wars tournament. Sci Am 256(1):8–11CrossRefGoogle Scholar
  34. Dittrich P, Ziegler J, Banzhaf W (2001) Artificial chemistries: a review. Artif Life 7:225–275CrossRefPubMedGoogle Scholar
  35. Droop A, Hickinbotham S (2012) A quantitative measure of non-neutral evolutionary activity for systems that exhibit intrinsic fitness. Artificial Life XIII, pp 45–52Google Scholar
  36. Edmonds B (1998) Meta-genetic programming: co-evolving the operators of variation. CPM Report 98–32, Centre for Policy Modelling, Manchester Metropolitan University, UK, Aytoun St., Manchester, M1 3GH, UKGoogle Scholar
  37. Ellis GFR (2011) Top-down causation and emergence: some comments on mechanisms. R Soc Interf Focus 6(1):1–15Google Scholar
  38. Fernández JD, Lobo D, Martn GM, Doursat R, Vico FJ (2012) Emergent diversity in an open-ended evolving virtual community. Artif Life 18(2):199–222CrossRefPubMedGoogle Scholar
  39. Fernando C, Kampis G, Szathmáry E (2011) Evolvability of natural and artificial systems. Proc Comput Sci 7:73–76CrossRefGoogle Scholar
  40. Foster JA (2001) Computational genetics: evolutionary computation. Nat Rev Genet 2:428–436CrossRefPubMedGoogle Scholar
  41. Frigg R, Hartmann S (2012) Models in science. In: Zalta EN (ed) The Stanford encyclopedia of philosophy. Fall 2012 editionGoogle Scholar
  42. Gardner M (1970) Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223(4):120–123Google Scholar
  43. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, San Francisco, CA, USAGoogle Scholar
  44. Gold EM (1967) Language identification in the limit. Inform Contr 10:447–474CrossRefGoogle Scholar
  45. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA, USAGoogle Scholar
  46. Gotts NM (2009) Ramifying feedback networks, cross-scale interactions, and emergent quasi individuals in Conway’s Game of Life. Artif Life 15(3):351–375CrossRefPubMedGoogle Scholar
  47. Hartmanis J, Stearns RE (1965) On the computational complexity of algorithms. Trans Am Math Soc 117:285–306CrossRefGoogle Scholar
  48. Harvey I (1992) Species adaptation genetic algorithms: a basis for a continuing SAGA. In: Toward a practice of autonomous systems: proceedings of the 1st European conference on artificial life, pp 346–354Google Scholar
  49. Hasegawa T (2015) On the evolution of genotype-phenotype mapping: exploring viability in the Avida articial life system. PhD, Dublin City University, School of Electronic EngineeringGoogle Scholar
  50. Heylighen F (2012) Brain in a vat cannot break out. J Conscious StudGoogle Scholar
  51. Hickinbotham S, Clark E, Nellis A, Stepney S, Clarke T, Young P (2016) Maximising the adjacent possible in automata chemistries. Artif Life 22(1):49–75CrossRefPubMedGoogle Scholar
  52. Hickinbotham S, Clark E, Stepney S, Clarke T, Nellis A, Pay M, Young P. Specification of the stringmol chemical programming language version 0.2. Technical report, Technical Report YCS-2010-458, University of YorkGoogle Scholar
  53. Hilbert D (1901) Mathematical problems. Archiv der Mathematik und Physik, 3rd series, vol 1, pp 44–65, 213–237Google Scholar
  54. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI, USAGoogle Scholar
  55. Horsman C, Stepney S, Wagner RC, Kendon V (2014) When does a physical system compute? Proc R Soc A 470(2169):20140182CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hoverd T, Stepney S (2011) Energy as a driver of diversity in open-ended evolution. In: ECAL 2011, Paris, France, August 2011. MIT Press, Cambridge, MA, USA, pp 356–363Google Scholar
  57. Humphreys P (2004) Extending ourselves: computational science, empiricism, and scientific method. Oxford University Press, Oxford, UKGoogle Scholar
  58. Huneman P (2012) Determinism, predictability and open-ended evolution: lessons from computational emergence. Synthese 185(2):195–214CrossRefGoogle Scholar
  59. Hutton TJ (2002) Evolvable self-replicating molecules in an artificial chemistry. Artif Life 8(4):341–356CrossRefPubMedGoogle Scholar
  60. Kaneko K (1994) Chaos as a source of complexity and diversity in evolution. Artif Life 1(1/2):163–178Google Scholar
  61. Kantschik W, Dittrich P, Brameier M, Banzhaf W (1999) Meta-evolution in graph GP. In: Poli R, Nordin P, Langdon W, Fogarty T (eds) Genetic programming: proceedings EuroGP 1999. Springer, Berlin, Germany, pp 15–28CrossRefGoogle Scholar
  62. Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of computer computations. Plenum, New YorkGoogle Scholar
  63. Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UKGoogle Scholar
  64. Kleppe A, Warmer J, Bast W (2003) MDA explained: the model driven architecture: practice and promise. Addison-Wesley, Reading, MA, USAGoogle Scholar
  65. Knibbe C, Coulon A, Mazet O, Fayard J-M, Beslon G (2007) A long-term evolutionary pressure on the amount of noncoding DNA. Mol Biol Evolut 24(10):2344–2353CrossRefGoogle Scholar
  66. Koestler A (1970) Beyond atomism and holism: the concept of the holon. Perspect Biol Med 13(2):131–154CrossRefGoogle Scholar
  67. Koza J (1992) Genetic programming. MIT Press, Cambridge, MA, USAGoogle Scholar
  68. Lan D (2006) Hierarchy, complexity, society. In: Pumain D (ed) Hierarchy in natural and social sciences. Springer, Berlin, Germany, pp 81–119Google Scholar
  69. Lehman J, Stanley KO (2011) Abandoning objectives: evolution through the search for novelty alone. Evol Comput 19(2):189–223CrossRefPubMedGoogle Scholar
  70. Lehman J, Stanley KO (2012) Beyond open-endedness: quantifying impressiveness. ALIFE XIII, pp 75–82Google Scholar
  71. Maley C (1999) Four steps toward open-ended evolution. In: Proceedings of the genetic and evolutionary computation conference (GECCO-1999), vol 2, pp 1336Google Scholar
  72. Markovitch O, Sorek D, Lui LT, Lancet D, Krasnogor N (2012) Is there an optimal level of open-endedness in prebiotic evolution? Orig Life Evolut Biosph 42(5):469–474CrossRefGoogle Scholar
  73. Maynard Smith J (1988) Evolutionary progress and levels of selection. In: Nitecki M (ed) Evolutionary progress. University of Chicago Press, Chicago, IL, USA, pp 219–230Google Scholar
  74. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University PressGoogle Scholar
  75. McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10(1):13–26Google Scholar
  76. McMullin B (2012) Architectures for self-reproduction: abstractions, realisations and a research program. In: Adami C, Bryson DM, Ofria C, Pennock RT (eds) Artificial life XIII. MIT Press, Cambridge, MA, USA, pp 83–90Google Scholar
  77. Medernach D, Kowaliw T, Ryan C, Doursat R (2013) Long-term evolutionary dynamics in heterogeneous cellular automata. In: Proceedings of the 15th annual conference on Genetic and evolutionary computation (GECCO’13), pp 231–238. ACMGoogle Scholar
  78. Morris I (2010) Why the west rules-for now: the patterns of history and what they reveal about the future. Profile Books, London, UKGoogle Scholar
  79. Nehaniv CL, Hewitt J, Christianson B, Wernick P. What software evolution and biological evolution don’t have in common. In: 2nd international IEEE workshop on software evolvability (SE’06), pp 58–65. IEEEGoogle Scholar
  80. Odling-Smee F, Laland K, Feldman M (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton, NJ, USAGoogle Scholar
  81. Pargellis AN (2001) Digital life behavior in the amoeba world. Artif Life 7(1):63–75CrossRefPubMedGoogle Scholar
  82. Pfante O, Bertschinger N, Obrich E, Ay N, Jost J (2014) Comparison between different methods of level identification. Adv Complex Syst 17:1450007–1–1450007-21CrossRefGoogle Scholar
  83. Plucain J, Hindré T, Le Gac M, Tenaillon O, Cruveiller S, Médigue C, Leiby N, Harcombe WR, Marx CJ, Lenski RE, Schneider D (2014) Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343:1366–1369CrossRefPubMedGoogle Scholar
  84. Popper K (1982) The open universe: an argument for indeterminism. Hutchinson, London, UKGoogle Scholar
  85. Post EL (1944) Recursively enumerable sets of positive integers and their decision problems. Bull Am Math Soc 50:284–316CrossRefGoogle Scholar
  86. Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF, Bedau MA (2004) Transitions from nonliving to living matter. Science 303(5660):963–965CrossRefPubMedGoogle Scholar
  87. Rasmussen S, Knudsen C, Feldberg R, Hindsholm M (1990) The coreworld: emergence and evolution of cooperative structures in a computational chemistry. Physica 42D:111–134Google Scholar
  88. Ray TS (1992) An approach to the synthesis of life. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artifical life II. Addison-Wesley, Reading, MA, USA, pp 371–408Google Scholar
  89. Ray TS (1992) Evolution, ecology and optimization of digital organisms. Working paper 92–08-042, Santa FeGoogle Scholar
  90. Rendell P (2002) Turing universality of the game of life. In: Adamatzky A (ed) Collision-based computing. Springer, Berlin, GermanyGoogle Scholar
  91. Renner G, Ekárt A (2003) Genetic algorithms in computer aided design. Comput Aided Design 35(8):709–726CrossRefGoogle Scholar
  92. Rensch B (1959) Evolution above the species level. Methuen, LondonGoogle Scholar
  93. Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput Graph 21(4):25–34CrossRefGoogle Scholar
  94. Rogers H (1987) Theory of recursive functions and effective computability. MIT Press, Cambridge, MA, USAGoogle Scholar
  95. Rosen R (1991) Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press, New York, NY, USAGoogle Scholar
  96. Ruiz-Mirazo K, Moreno A (2012) Autonomy in evolution: from minimal to complex life. Synthese 185(1):21–52CrossRefGoogle Scholar
  97. Ruiz-Mirazo K, Pereto J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Origins Life Evolut Biosph 34(3):323–346CrossRefGoogle Scholar
  98. Ruiz-Mirazo K, Umerez J, Moreno A (2008) Enabling conditions for ‘open-ended evolution’. Biol Philos 23(1):67–85CrossRefGoogle Scholar
  99. Schrödinger E (1944) What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge, UKGoogle Scholar
  100. Schulman R, Yurke B, Winfree E (2012) Robust self-replication of combinatorial information via crystal growth and scission. PNAS 109(17):6405–6410CrossRefPubMedPubMedCentralGoogle Scholar
  101. Sipper M, Sanchez E, Mange D, Tomassini M, Pérez-Uribe A, Stauffer A (1997) A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans Evolut Comput 1(1):83–97CrossRefGoogle Scholar
  102. Sipper M, Sanchez E, Mange D, Tomassini M, Pérez-Uribe A, Stauffer A (1998) An introduction to bioinspired machines. In: Bio-inspired computing machines towards novel computational architectures. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, pp 1–12Google Scholar
  103. Skusa A, Bedau MA (2002) Towards a comparison of evolutionary creativity in biological and cultural evolution. In: ALife VIII. MIT Press, Cambridge, MA, USA, pp 233–242Google Scholar
  104. Soare RI (1987) Recursively enumerable sets and degrees: a study of computable functions and computably generated sets. MIT PressGoogle Scholar
  105. Soros LB, Stanley KO (2014) Identifying necessary conditions for open-ended evolution through the artificial life world of Chromaria. In: Artificial life 14: international conference on the synthesis and simulation of living systems, vol 14, pp 793–800Google Scholar
  106. Spector L (2010) Towards practical autoconstructive evolution: self-evolution of problem-solving genetic programming systems. In: Riolo R, McConaghy T, Vladislavleva E (eds) Genetic programming theory and practice VIII, volume 8 of genetic and evolutionary computation, chapter 2, pp 17–33. Springer, Ann Arbor, USA, 20–22 May 2010Google Scholar
  107. Spector L, Robinson A (2002) Genetic programming and autoconstructive evolution with the push programming language. Genet Program Evol Mach 3:7–40CrossRefGoogle Scholar
  108. Standish RK (2003) Open-ended artificial evolution. Int J Comput Intell Appl 3(2):167–175CrossRefGoogle Scholar
  109. Stepney S (2012) A pattern language for scientific simulations. In: Proceedings of the 2012 workshop on complex systems modelling and simulation, Orleans, France, pp 77–103Google Scholar
  110. Stepney S, Alden K, Paul JLB, Andrews S, Droop A, Ghetiu T, Hoverd T, Polack FAC, Read M, Ritson CG, Sampson AT, Timmis J, Welch PH, Winfield AFT (2016) Engineering simulations as scientific instruments. Springer (in preparation), Berlin, GermanyGoogle Scholar
  111. Stepney S, Andrews PS (2015) CoSMoS special issue editorial. Nat Comput 14:1–6CrossRefGoogle Scholar
  112. Stepney S, Hoverd T (2011) Reflecting on open-ended evolution. In: ECAL ’11: proceedings of the 11th European conference on artificial life. MIT Press, Cambridge, MA, USA, pp 781–788Google Scholar
  113. Suppes P (1960) A comparison of the meaning and uses of models in mathematics and the empirical sciences. Synthese 12:287–301CrossRefGoogle Scholar
  114. Szathmáry E (2015) Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci 112(33):10104–10111CrossRefPubMedPubMedCentralGoogle Scholar
  115. Taylor T (1999) From artificial evolution to artificial life. PhD thesis, The University of EdinburghGoogle Scholar
  116. Turing A (1936–1937) On computable numbers, with an application to the Entscheidungsproblem. Proc London Math Soc Ser 2 42:230–265Google Scholar
  117. Valiant L (1984) A theory of the learnable. Commun ACM 27:1134–1135CrossRefGoogle Scholar
  118. Waddington C (2008) Paradigm for an evolutionary process. Biol Theory 3:258–266CrossRefGoogle Scholar
  119. Weisberg M (2013) Simulation and similarity: using models to understand the world. Oxford University Press, Oxford, UKGoogle Scholar
  120. Wilson D (1997) Biological communities as functionally organized units. Ecology 78:2018–2024CrossRefGoogle Scholar
  121. Wimsatt W (1987) False models as means to truer theories. In: Nitecki N, Hoffman A (eds) Neutral models in biology. Oxford University Press, New York, pp 23–55Google Scholar
  122. Wimsatt W (1994) The ontology of complex systems: levels, perspectives, and causal thickets. Can J Philos 20(Suppl):207–274Google Scholar
  123. Winsberg E (2010) Science in the age of computer simulation. Chicago University Press, Chicago, IL, USAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wolfgang Banzhaf
    • 1
  • Bert Baumgaertner
    • 2
  • Guillaume Beslon
    • 3
  • René Doursat
    • 4
    • 5
  • James A. Foster
    • 6
  • Barry McMullin
    • 7
  • Vinicius Veloso de Melo
    • 1
  • Thomas Miconi
    • 8
  • Lee Spector
    • 9
  • Susan Stepney
    • 10
  • Roger White
    • 11
  1. 1.Department of Computer ScienceMemorial University of Newfoundland St. John’sCanada
  2. 2.Department of Philosophy and Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowUSA
  3. 3.Université de Lyon, INSA-Lyon, INRIA Beagle, CNRS LIRIS UMR5205Villeurbanne France
  4. 4.BioEmergences LabCNRS USR3695Gif-sur-YvetteFrance
  5. 5.Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS UPS3611ParisFrance
  6. 6.Department of Biological Sciences, and Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowUSA
  7. 7.Dublin City UniversityDublinIreland
  8. 8.The Neurosciences InstituteLa JollaUSA
  9. 9.Cognitive Science, Hampshire CollegeAmherstUSA
  10. 10.Department of Computer Science, and York Centre for Complex Systems AnalysisUniversity of YorkYorkUK
  11. 11.Department of GeographyMemorial University of Newfoundland St. John’sCanada

Personalised recommendations