Theory in Biosciences

, Volume 133, Issue 3–4, pp 179–186 | Cite as

On the methods to assess significance in nestedness analyses

SHORT COMMUNICATION

Abstract

Use of Z values to evaluate nestedness significance is a common procedure. An appealing alternative to the use of Z values is that of using a value of relative nestedness (RN). However, there is no agreement on the preferable procedures to generate the null matrices needed to compute both Z and RN. In general, it is recommended to use restrictive null models that take into account row and column totals. The two most widely used null models of this kind, namely, FF and CE [that generate matrices with row and column sums equal (FF) or proportional (CE) to the row and column totals of the original matrix, respectively], are very different in terms of restrictiveness. We performed a set of comparative analyses on both theoretical and real matrices to investigate the differences between the use of Z and RN values, and between the use of FF and CE null models, when NODF (Nestedness metric based on overlap and decreasing fill) or ρ(A) (i.e., the largest eigenvalue of the adjacency matrix) are used to measure nestedness. We found no difference in the use of Z or RN values. On the other hand, we found that different combinations of nestedness measures and null models may lead to inconsistent outcomes. Our results offer some clarity on a few issues that, despite playing a central role in the practical application of nestedness analysis, have been little explored, and highlight the need for the definition of some commonly accepted standards.

Keywords

Ecological network Matrix order Null models Species-area matrix 

Supplementary material

12064_2014_203_MOESM1_ESM.xls (64 kb)
Table S1–S3 Pearson product-moment correlation coefficients and their respective p values of the pairwise correlations between matrix properties (number of occurrences, size and fill), nestedness measures [NODF and ρ(A)] and standardized nestedness measures (Z, RN and p values) under different null models (EE, CE and FF) computed for the set of theoretical matrices, the set of species-area matrices, and the set of mutualistic networks. Correlation coefficients and p values are, respectively, shown below and above the main table diagonal (XLS 63 kb)

References

  1. Almeida-Neto M, Ulrich W (2010) A straightforward computational approach for quantifying nestedness using abundance data. Environ Modell Softw 26:173–178. doi:10.1016/j.envsoft.2010.08.003 CrossRefGoogle Scholar
  2. Almeida-Neto M, Guimarães P, Guimarães JPR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239. doi:10.1111/j.2008.0030-1299.16644.x CrossRefGoogle Scholar
  3. Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382. doi:10.1007/BF00317508 CrossRefGoogle Scholar
  4. Atmar W, Patterson BD (1995) The nestedness temperature calculator: a visual basic program, including 294 presence–absence matrices. AICS Research, Inc., University Park, NM and The Field Museum, Chicago. http://www.aics-research.com/nestedness/tempcalc.html
  5. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. P Natl Acad Sci USA 100:9383–9387. doi:10.1073/pnas.1633576100 CrossRefGoogle Scholar
  6. Baselga A (2010) Multiplicative partition of true diversity yields independent alpha and beta components, additive partition does not. Ecology 91:1974–1981. doi:10.1890/09-0320.1 PubMedCrossRefGoogle Scholar
  7. Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020. doi:10.1038/nature07950 PubMedCrossRefGoogle Scholar
  8. Carstensen DW, Olesen JM (2009) Wallacea and its nectarivorous birds: nestedness and modules. J Biogeogr 36:1540–1550. doi:10.1111/j.1365-2699.2009.02098.x CrossRefGoogle Scholar
  9. Feng L, Yu G, Zhang XD (2007) Spectral radius of graphs with given matching number. Linear Algebra Appl 422:133–138. doi:10.1016/j.laa.2006.09.014 CrossRefGoogle Scholar
  10. Gotelli NJ, Entsminger GL (2001) Swap and fill algorithms in null model analysis: rethinking the knight’s tour. Oecologia 129:281–291. doi:10.1007/s004420100717 CrossRefGoogle Scholar
  11. Gotelli NJ, Ulrich W (2012) Statistical challenges in null model analysis. Oikos 121:171–180. doi:10.1111/j.1600-0706.2011.20301.x CrossRefGoogle Scholar
  12. Graham SP, Hassan HK, Burkett-Cadena ND, Guyer C, Unnasch TR (2009) Nestedness of ectoparasite-vertebrate host networks. PLoS One 4:e7873. doi:10.1371/journal.pone.0007873 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Guimarães PR, Guimarães P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Modell Softw 21:1512–1513. doi:10.1016/j.envsoft.2006.04.002 CrossRefGoogle Scholar
  14. Jonhson S, Domínguez-García V, Muñoz MA (2013) Factors determining nestedness in complex networks. PLoS One 8:e74025. doi:10.1371/journal.pone.0074025 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Krishna A, Guimarães PR, Jordano P, Bascompte J (2008) A neutral-niche theory of nestedness in mutualistic networks. Oikos 117:1609–1618. doi:10.1111/j.1600-0706.2008.16540.x CrossRefGoogle Scholar
  16. Nielsen A, Bascompte J (2007) Ecological networks, nestedness and sampling effort. J Ecol 95:1134–1141. doi:10.1111/j.1365-2745.2007.01271.x CrossRefGoogle Scholar
  17. Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol J Linn Soc 28:65–82. doi:10.1111/j.1095-8312.1986.tb01749.x CrossRefGoogle Scholar
  18. Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos 120:1625–1638. doi:10.1111/j.1600-0706.2011.19451.x CrossRefGoogle Scholar
  19. Podani J, Schmera D (2013) A comparative evaluation of pairwise nestedness measures. Ecography 35:889–900. doi:10.1111/j.1600-0587.2011.07319.x CrossRefGoogle Scholar
  20. Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928. doi:10.1038/nature05956 PubMedCrossRefGoogle Scholar
  21. Staniczenko PPA, Kopp JC, Allesina S (2013) The ghost of nestedness in ecological networks. Nat Commun 4:1391. doi:10.1038/ncomms2422 PubMedCrossRefGoogle Scholar
  22. Strona G, Stefani F, Galli P, Fattorini S (2011) Reapproaching the centre of origin theory: a case study of siganid fishes (Actinistia: Siganidae). Vie Milieu 61:71–76Google Scholar
  23. Strona G, Galli P, Fattorini S (2013a) Fish parasites resolve the paradox of missing coextinctions. Nat Commun 4:1718. doi:10.1038/ncomms2723 PubMedCrossRefGoogle Scholar
  24. Strona G, Stefani F, Galli P, Fattorini S (2013b) A protocol to compare nestedness among submatrices. Popul Ecol 55:227–239. doi:10.1007/s10144-012-0343-4 CrossRefGoogle Scholar
  25. Strona G, Galli P, Seveso D, Montano S, Fattorini S (2014) Nestedness for Dummies (NeD): a user friendly web interface for exploratory nestedness analysis. J Stat Soft (in press)Google Scholar
  26. Ulrich W (2006) Nestedness––a FORTRAN program for calculating ecological matrix temperatures. http://www.uni.torun.pl/~ulrichw
  27. Ulrich W, Almeida-Neto M (2012) On the meanings of nestedness: back to the basics. Ecography 35:865–871. doi:10.1111/j.1600-0587.2012.07671.x CrossRefGoogle Scholar
  28. Ulrich W, Gotelli NJ (2007) Null model analysis of species nestedness patterns. Ecology 88:1824–1831. doi:10.1890/06-1208.1 PubMedCrossRefGoogle Scholar
  29. Ulrich W, Gotelli NJ (2012) A null model algorithm for presence–absence matrices based on proportional resampling. Ecol Model 244:20–27. doi:10.1016/j.ecolmodel.2012.06.030 CrossRefGoogle Scholar
  30. Ulrich W, Gotelli NJ (2013) Pattern detection in null model analysis. Oikos 122:2–18. doi:10.1111/j.1600-0706.2012.20325.x CrossRefGoogle Scholar
  31. Ulrich W, Almeida-Neto M, Gotelli NG (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17. doi:10.1111/j.1600-0706.2008.17053.x CrossRefGoogle Scholar
  32. Verdú M, Valiente-Banuet A (2008) The nested assembly of plant facilitation networks prevents species extinctions. Am Nat 172:751–760. doi:10.1086/593003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.European Commission, Joint Research CentreInstitute for Environment and SustainabilityIspraItaly
  2. 2.Azorean Biodiversity Group (GBA, CITA-A) and Platform for Enhancing Ecological Research and Sustainability (PEERS), Departamento de Ciências AgráriasUniversidade dos AçoresAngra do HeroísmoAzores, Portugal

Personalised recommendations