Theory in Biosciences

, Volume 133, Issue 3–4, pp 145–163 | Cite as

The role of self-organization in developmental evolution

Original Paper

Abstract

In developmental and evolutionary biology, particular emphasis has been given to the relationship between transcription factors and the cognate cis-regulatory elements of their target genes. These constitute the gene regulatory networks that control expression and are assumed to causally determine the formation of structures and body plans. Comparative analysis has, however, established a broad sequence homology among species that nonetheless display quite different anatomies. Transgenic experiments have also confirmed that many developmentally important elements are, in fact, functionally interchangeable. Although dependent upon the appropriate degree of gene expression, the actual construction of specific structures appears not directly linked to the functions of gene products alone. Instead, the self-formation of complex patterns, due in large part to epigenetic and non-genetic determinants, remains a persisting theme in the study of ontogeny and regenerative medicine. Recent evidence indeed points to the existence of a self-organizing process, operating through a set of intrinsic rules and forces, which imposes coordination and a holistic order upon cells and tissue. This has been repeatedly demonstrated in experiments on regeneration as well as in the autonomous formation of structures in vitro. The process cannot be wholly attributed to the functional outcome of protein–protein interactions or to concentration gradients of diffusible chemicals. This phenomenon is examined here along with some of the methodological and theoretical approaches that are now used in understanding the causal basis for self-organization in development and its evolution.

Keywords

Self-organization Gene regulatory networks Morphogenesis Evo-devo Regeneration 

References

  1. Alencar AM, Andrade JS, Lucena LS (1997) Self-organized percolation. Phys Rev E 56:R2379–R2382Google Scholar
  2. Alonso CR, Wilkins AS (2005) The molecular elements that underlie developmental evolution. Nat Rev Genet 6(9):709–715PubMedGoogle Scholar
  3. Amemiya CT et al (2013) The African coelacanth genome provides insights into tetrapod evolution. Nature 496(7445):311–316PubMedCentralPubMedGoogle Scholar
  4. Angst B, Marcozzi C, Magee A (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114:629–641PubMedGoogle Scholar
  5. Attanasio C, Nord AS, Zhu Y, Blow MJ, Li Z, Liberton DK, Morrison H, Plajzer-Frick I, Holt A, Hosseini R, Phouanenavong S, Akiyama JA, Shoukry M, Afzal V, Rubin EM, FitzPatrick DR, Ren B, Hallgrímsson B, Pennacchio LA, Visel A (2013) Fine tuning of craniofacial morphology by distant-acting enhancers. Science 342(6157):1241006PubMedCentralPubMedGoogle Scholar
  6. Ayyar S, Negre B, Simpson P, Stollewerk A (2010) An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambrian 8:127Google Scholar
  7. Baker RE, Schnell S, Maini PK (2006) A clock and wavefront mechanism for somite formation. Dev Biol 293(1):116–126PubMedGoogle Scholar
  8. Balleza E, López-Bojorquez LN, Martínez-Antonio A, Resendis-Antonio O, Lozada-Chávez I, Balderas-Martínez YI, Encarnación S, Collado-Vides J (2009) Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Rev 33(1):133–151PubMedCentralPubMedGoogle Scholar
  9. Batten B, Salthe S, Boschetti F (2008) Visions of evolution: self-organization proposes what natural selection disposes. Biol Theory 3(1):17–29Google Scholar
  10. Beloussov LV (1997) Life of Alexander G Gurwitsch and his relevant contribution to the theory of morphogenetic fields. Int J Dev Biol 41(6):771–779PubMedGoogle Scholar
  11. Belting HG, Shashikant CS, Ruddle FH (1998) Modification of expression and cis-regulation of Hoxc8 in the evolution of diverged axial morphology. Proc Natl Acad Sci USA 95(5):2355–2360PubMedCentralPubMedGoogle Scholar
  12. Birney E et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74Google Scholar
  13. Bizzarri M, Pasqualato A, Cucina A, Pasta V (2013a) Physical forces and non linear dynamics mould fractal cell shape. Histol Histopathol 28(2):155e174Google Scholar
  14. Bizzarri M, Palombo A, Cucina A (2013b) Theoretical aspects of systems biology. Prog Biophys Mol Biol 112(1–2):33–43PubMedGoogle Scholar
  15. Boettiger AN, Oster G (2009) Emergent complexity in simple neural systems. Commun Integr Biol 2(6):467–470PubMedCentralPubMedGoogle Scholar
  16. Bolker JA (2000) Modularity in development and why it matters to evo-devo. Am Zool 40(5):770–776Google Scholar
  17. Bosch M, Bishop SA, Baguña J, Couso JP (2010) Leg regeneration in Drosophila abridges the normal developmental program. Int J Dev Biol 54(8–9):1241–1250PubMedCentralPubMedGoogle Scholar
  18. Bozorgmehr JE (2012) The effect of functional compensation among duplicate genes can constrain their evolutionary divergence. J Genet 91(1):1–8PubMedGoogle Scholar
  19. Brakefield PM (2011) Evo-devo and accounting for Darwin’s endless forms. Philos Trans R Soc Lond B Biol Sci 366(1574):2069–2075PubMedCentralPubMedGoogle Scholar
  20. Britten RJ (2003) Only details determine. In: Müller GB, Newman SA (eds) Origination of organismal form: beyond the gene in developmental and evolutionary biology. MIT Press, Cambridge, pp 75–81Google Scholar
  21. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, PrincetonGoogle Scholar
  22. Capellini TD, Zappavigna V, Selleri L (2011) Pbx homeodomain proteins: TALEnted regulators of limb patterning and outgrowth. Dev Dyn 240(5):1063–1086PubMedCentralPubMedGoogle Scholar
  23. Carroll SB (2005) Endless forms most beautiful: the new science of evo devo and the making of the animal kingdom. W.W. Norton and Company, New YorkGoogle Scholar
  24. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1):25–36PubMedGoogle Scholar
  25. Chandebois R, Faber J (1987) From DNA transcription to visible structure: what the development of multicellular animals teaches us. Acta Biotheor 36(2):61–120PubMedGoogle Scholar
  26. Chanson L, Brownfield D, Garbe JC, Kuhn I, Stampfer MR, Bissell MJ, LaBarge MA (2011) Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells. Proc Natl Acad Sci USA 108(8):3264–3269PubMedCentralPubMedGoogle Scholar
  27. Chaplain MAJ, Singh GD, McLachlan JC (1999) On growth and form: spatio-temporal pattern formation in biology. Wiley, ChichesterGoogle Scholar
  28. Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58:455–476PubMedGoogle Scholar
  29. Cooper GM, Brown CD (2008) Qualifying the relationship between sequence conservation and molecular function. Genome Res 18(2):201–205PubMedGoogle Scholar
  30. Darwin C (1875) The variation of animals and plants under domestication. John Murray, LondonGoogle Scholar
  31. Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic Press, AmsterdamGoogle Scholar
  32. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311(5762):796–800PubMedGoogle Scholar
  33. Davidson EH, Levine MS (2008) Properties of developmental gene regulatory networks. Proc Natl Acad Sci USA 105(51):20063–20066PubMedCentralPubMedGoogle Scholar
  34. Davies JA (2005) Mechanisms of morphogenesis: the creation of biological form. Elsevier Academic Press, WalthamGoogle Scholar
  35. Davies JA (2008) Synthetic morphology: prospects for engineered, self-constructing anatomies. J Anat 212(6):707–719PubMedCentralPubMedGoogle Scholar
  36. Davies P (2013) The secret of life won’t be cooked up in a chemistry lab. Guardian online. http://www.guardian.co.uk/commentisfree/2013/jan/13/secret-life-unveiled-chemistry-lab
  37. De Robertis EM (2008) Evo-devo: variations on ancestral themes. Cell 132(2):185–195PubMedCentralPubMedGoogle Scholar
  38. Dias AS, de Almeida I, Belmonte JM, Glazier JA, Stern CD (2014) Somites without a clock. Science. doi:10.1126/science.1247575 Google Scholar
  39. Dobrescu R, Purcarea VL (2011) Emergence, self-organization and morphogenesis in biological structures. J Med Life 4(1):82–90PubMedCentralPubMedGoogle Scholar
  40. Dowell R (2011) The similarity of gene expression between human and mouse tissues. Genome Biol 12:101PubMedCentralPubMedGoogle Scholar
  41. Driesch H (1908) The science and philosophy of the organism. Adam and Charles Black, LondonGoogle Scholar
  42. Edelmann JB, Denton MJ (2007) The uniqueness of biological self-organization: challenging the Darwinian paradigm. Biol Philos 22(4):579–601Google Scholar
  43. Eguchi G, Eguchi Y, Nakamura K, Yadav MC, Millán JL, Tsonis PA (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384PubMedCentralPubMedGoogle Scholar
  44. Eiraku M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532PubMedGoogle Scholar
  45. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56PubMedGoogle Scholar
  46. Eiraku M, Adachi T, Sasai Y (2012) Relaxation-expansion model for self-driven retinal morphogenesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level. BioEssays 1:17–25Google Scholar
  47. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186PubMedGoogle Scholar
  48. Elsner JB, Tsonis PA (1989) On the dynamics of a forced reaction-diffusion model for biological pattern formation. Proc Natl Acad Sci USA 86(13):4938–4942PubMedCentralPubMedGoogle Scholar
  49. Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T (2001) The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. Dev Biol 229(2):287–306PubMedGoogle Scholar
  50. Fisher EM, O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TV, Henderson DJ, Nizetic D, Tybulewicz VL (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309(5743):2033–2037PubMedCentralPubMedGoogle Scholar
  51. Frankel N, Erezyilmaz DF, McGregor AP, Wang S, Payre F, Stern DL (2011) Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature 474(7353):598–603PubMedCentralPubMedGoogle Scholar
  52. Freitas R, Gómez-Marín C, Wilson JM, Casares F, Gómez-Skarmeta JL (2012) Hoxd13 contribution to the evolution of vertebrate appendages. Dev Cell 23(6):1219–1229PubMedGoogle Scholar
  53. Gehring WJ (2002) The genetic control of eye development and its implications for the evolution of the various eye-types. Int J Dev Biol 46:65–73PubMedGoogle Scholar
  54. Gellon G, McGinnis W (1998) Shaping animal body plans in development and evolution by modulation of Hox expression patterns. BioEssays 20(2):116–125PubMedGoogle Scholar
  55. Gerhart J, Kirschner M (1997) Cells, embryos, and evolution. Blackwell Science, MaldenGoogle Scholar
  56. Gerstman BS, Chapagain PP (2005) Self-organization in protein folding and the hydrophobic interaction. J Chem Phys 123:054901PubMedGoogle Scholar
  57. Gilbert SF (2006) Developmental biology, 8th edn. Mass: Sinauer Associates, Sunderland, pp 65–66Google Scholar
  58. Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173(2):357–372PubMedGoogle Scholar
  59. Goodwin BC (1985) Developing organisms as self-organizing fields. In: Antonelli PL (ed) Mathematical essays on growth and the emergence of form. Univer-sity of Alberta Press, AlbertaGoogle Scholar
  60. Goodwin BC, Trainor LE (1980) A field description of the cleavage process in embryogenesis. J Theor Biol 85:757–770PubMedGoogle Scholar
  61. Green AA, Kennaway JR, Hanna AI, Bangham JA, Coen E (2010) Genetic control of organ shape and tissue polarity. PLoS Biol 8:e1000537PubMedCentralPubMedGoogle Scholar
  62. Guo CL (2013) Mechanical models for the self-organization of tubular patterns. Biomatter 3(3):e24926Google Scholar
  63. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300PubMedCentralPubMedGoogle Scholar
  64. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792PubMedGoogle Scholar
  65. Hall BK (2003) Unlocking the black box between genotype and phenotype: Cell condensations as morphogenetic (modular) units. Biol Philos 18(2):219–247Google Scholar
  66. Halley JD, Winkler D (2008) Consistent concepts of self-organization and self-assembly. Complexity 14(2):10–17Google Scholar
  67. Harold FM (2005) Molecules into cells: specifying spatial architecture. Microbiol Mol Biol Rev 69(4):544–564PubMedCentralPubMedGoogle Scholar
  68. Hayashi T, Mizuno N, Ueda Y, Okamoto M, Kondoh H (2004) FGF2 triggers iris-derived lens regeneration in newt eye. Mech Dev 121(6):519–526PubMedGoogle Scholar
  69. Heisenberg W (1930) The physical principles of the quantum theory. University of Chicago Press, Chicago, ILGoogle Scholar
  70. Held LI (2009) Quirks of human anatomy. In: An Evo-Devo Look at the Human Body, Cambridge University Press, CambridgeGoogle Scholar
  71. Held LI (2010) The evolutionary geometry of human anatomy: discovering our inner fly. Evol Anthropol 19:227–235Google Scholar
  72. Henry JJ, Tsonis PA (2010) Molecular and cellular aspects of amphibian lens regeneration. Prog Retin Eye Res 29(6):543–555PubMedCentralPubMedGoogle Scholar
  73. Henry RW, Haldiman JT, Albert TF, Henk WG, Abdelbaki YZ, Duffield DW (1983) Gross anatomy of the respiratory system of the bowhead whale, Balaena mysticetus. Anat Rec 207(3):435–449PubMedGoogle Scholar
  74. Herbert-Read JE, Perna A, Mann RP, Schaerf TM, Sumpter DJ, Ward AJ (2011) Inferring the rules of interaction of shoaling fish. Proc Natl Acad Sci USA 108(46):18726–18731PubMedCentralPubMedGoogle Scholar
  75. Hernando-Herraez I, Prado-Martinez J, Garg P, Fernandez-Callejo M, Heyn H, Hvilsom C, Navarro A, Esteller M, Sharp AJ, Marques-Bonet T (2013) Dynamics of DNA methylation in recent human and great ape evolution. PLoS Genet 9(9):e1003763PubMedCentralPubMedGoogle Scholar
  76. Hodgkin J (2001) What does a worm want with 20,000 genes? Genome Biol 2(11):comment2008.1–2008.4Google Scholar
  77. Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61(5):995–1016PubMedGoogle Scholar
  78. Hood L, Galas D (2003) The digital code of DNA. Nature 421(6921):444–448PubMedGoogle Scholar
  79. Howard J, Grill SW, Bois JS (2011) Turing’s next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Biol 12(6):392–398PubMedGoogle Scholar
  80. Huang S, Ingber DE (2000) Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 261:91–103PubMedGoogle Scholar
  81. Hughes TR, Weirauch MT (2010) Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends Genet 26(2):66–74PubMedGoogle Scholar
  82. Hynes R (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687PubMedGoogle Scholar
  83. Ingber DE (2005) Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci USA 102(33):11571–11572PubMedCentralPubMedGoogle Scholar
  84. Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166PubMedGoogle Scholar
  85. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedGoogle Scholar
  86. Jimenez SK, Sheikh F, Jin Y, Detillieux KA, Dhaliwal J, Kardami E, Cattini PA (2004) Transcriptional regulation of FGF-2 gene expression in cardiac myocytes. Cardiovasc Res 62(3):548–557PubMedGoogle Scholar
  87. Jonsson H, Peng SL (2005) Forkhead transcription factors in immunology. Cell Mol Life Sci 62(4):397–409PubMedGoogle Scholar
  88. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y (2013) Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci USA 110(50):20284–20289PubMedCentralPubMedGoogle Scholar
  89. Kaern M, Miguez DG, Munuzuri AP, Menzinger M (2004) Control of chemical pattern formation by a clock-and-wavefront type mechanism. Biophys Chem 110:231–238PubMedGoogle Scholar
  90. Karsenti E (2008) Self-organization in cell biology: a brief history. Nat Rev Mol Cell Biol 9:255–262PubMedGoogle Scholar
  91. Kauffman S (1993) Origins of order: self-organization and selection in evolution. Oxford University Press, OxfordGoogle Scholar
  92. Keim B (2010) Early reports from the “Dark Matter” of the genome. Wired Science. http://www.wired.com/wiredscience/2010/12/genomic-dark-matter/
  93. Keller R (2006) Mechanisms of elongation in embryogenesis. Development 133:2291–2302PubMedGoogle Scholar
  94. Keller R, Davidson L, Shook D (2003) How we are shaped: the biomechanics of gastrulation. Differentiation 7:171–205Google Scholar
  95. Kerszberg M, Wolpert L (2007) Specifying positional information in the embryo: looking beyond morphogens. Cell 130(2):205–209PubMedGoogle Scholar
  96. Khavari DA, Sen GL, Rinn JL (2010) DNA methylation and epigenetic control of cellular differentiation. Cell Cycle 9(19):3880–3883PubMedGoogle Scholar
  97. Klingenberg CP, Leamy LJ (2001) Quantitative genetics of geometric shape in the mouse mandible. Evolution 55:2342–2352PubMedGoogle Scholar
  98. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620PubMedGoogle Scholar
  99. Kostka D, Hubisz MJ, Siepel A, Pollard KS (2012) The role of GC-biased gene conversion in shaping the fastest evolving regions of the human genome. Mol Biol Evol 29(3):1047–1057PubMedCentralPubMedGoogle Scholar
  100. Lavagnino M, Arnoczky SP (2005) In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J Orthop Res 23(5):1211–1218PubMedGoogle Scholar
  101. Lecuit T (2008) Developmental mechanics: cellular patterns controlled by adhesion, cortical tension and cell division. HFSP J 2(2):72–78PubMedCentralPubMedGoogle Scholar
  102. Levin M (2011) The wisdom of the body: future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen Med 6(6):667–673PubMedGoogle Scholar
  103. Levin M (2012a) Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems 109(3):243–261PubMedCentralPubMedGoogle Scholar
  104. Levin M (2012b) Molecular bioelectricity in developmental biology: new tools and recent discoveries. BioEssays 34(3):205–217PubMedCentralPubMedGoogle Scholar
  105. Levin M, Stevenson CG (2012) Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng 14:295–323PubMedGoogle Scholar
  106. Levine M (2010) Transcriptional enhancers in animal development and evolution. Curr Biol 20(17):R754–R763PubMedGoogle Scholar
  107. Lipton BH, Bensch KG, Karasek MA (1991) Microvessel endothelial cell transdifferentiation: phenotypic characterization. Differentiation 46(2):117–133PubMedGoogle Scholar
  108. Liu J, Wang ZA (2012) Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension. J Biol Dyn 6(Suppl 1):31–41PubMedGoogle Scholar
  109. Liu F, van der Lijn F, Schurmann C, Zhu G, Chakravarty MM et al (2012) A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet 8(9):e1002932PubMedCentralPubMedGoogle Scholar
  110. Loehlin DQ, Werren JH (2012) Evolution of shape by multiple regulatory changes to a growth gene. Science 335(6071):943–947PubMedCentralPubMedGoogle Scholar
  111. Maini PK, Crampin EJ, Hackborn WW (2002) Pattern formation in reaction–diffusion models with nonuniform domain growth. Bull Math Biol 64(4):747–769PubMedGoogle Scholar
  112. Mandelbrot BB (1982) The fractal geometry of nature. WH Freeman and co, San FranciscoGoogle Scholar
  113. Mansfield JH (2013) cis-regulatory change associated with snake body plan evolution. PNAS 110(26):10473–10474PubMedCentralPubMedGoogle Scholar
  114. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6(12):e28766PubMedCentralPubMedGoogle Scholar
  115. Matthee CA, Burzlaff JD, Taylor JF, Davis SK (2001) Mining the mammalian genome for artiodactyl systematics. Syst Biol 50:367–390PubMedGoogle Scholar
  116. McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD, Guenther C, Indjeian VB, Lim X, Menke DB, Schaar BT, Wenger AM, Bejerano G, Kingsley DM (2011) Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471(7337):216–219PubMedCentralPubMedGoogle Scholar
  117. McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114PubMedGoogle Scholar
  118. Meinhardt H (2012) Modeling pattern formation in hydra: a route to understanding essential steps in development. Int J Dev Biol 56(6–8):447–462PubMedGoogle Scholar
  119. Meinhardt H, Gierer A (2000) Pattern formation by local self-activation and lateral inhibition. BioEssays 22:753–760PubMedGoogle Scholar
  120. Merks RMH, Glazier JA (2005) A cell-centred approach to developmental biology. Phys A 352:113–130Google Scholar
  121. Minguillon C, Del Buono J, Logan MP (2005) Tbx5 and Tbx4 are not sufficient to determine limb-specific morphologies but have common roles in initiating limb outgrowth. Dev Cell 8(1):75–84PubMedGoogle Scholar
  122. Minguillón C, Gardenyes J, Serra E, Castro LF, Hill-Force A, Holland PW, Amemiya CT, Garcia-Fernàndez J (2005) No more than 14: the end of the amphioxus Hox cluster. Int J Biol Sci 1(1):19–23PubMedCentralPubMedGoogle Scholar
  123. Misteli T (2001) The concept of self-organization in cellular architecture. J Cell Biol 155(2):181–186PubMedCentralPubMedGoogle Scholar
  124. Moens CB, Selleri L (2006) Hox co-factors in vertebrate development. Dev Biol 291:193–206PubMedGoogle Scholar
  125. Monteiro A, Podlaha O (2009) Wings, horns, and butterfly eyespots: how do complex traits evolve? PLoS Biol 7(2):e37PubMedGoogle Scholar
  126. Morelli LG, Uriu K, Ares S, Oates AC (2012) Computational approaches to developmental patterning. Science 336:187–191PubMedGoogle Scholar
  127. Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF (2012) Differential diffusivity of nodal and lefty underlies a reaction-diffusion patterning system. Science 336(6082):721–724PubMedCentralPubMedGoogle Scholar
  128. Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10(2):104–115PubMedGoogle Scholar
  129. Naiche LA, Papaioannou VE (2007) Tbx4 is not required for hindlimb identity or post-bud hindlimb outgrowth. Development 134(1):93–103PubMedGoogle Scholar
  130. Nelson TR, Manchester DK (1988) Modeling of lung morphogenesis using fractal geometries. IEEE Trans Med Imaging 7(4):321–327PubMedGoogle Scholar
  131. Newman SA (2012) Physico-genetic determinants in the evolution of development. Science 338(6104):217–219PubMedGoogle Scholar
  132. Newman SA, Bhat R (2008) Dynamical patterning modules: physico-genetic determinants of morphological development and evolution. Phys Biol 5(1):015008PubMedGoogle Scholar
  133. Newman SA, Linde-Medina M (2013) Physical determinants in the emergence and inheritance of multicellular form. Biological Theory 8(3):274–285Google Scholar
  134. Nicolis G (1977) Self-organization in non-equilibrium systems. Wiley, PrigogineGoogle Scholar
  135. Niehrs C (2010) On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137:845–857PubMedGoogle Scholar
  136. Nijhout HF (1990) Metaphors and the role of genes in development. BioEssays 12(9):441–446PubMedGoogle Scholar
  137. Noble D (2013) Physiology is rocking the foundations of evolutionary biology. Exp Physiol 98(8):1235–1243PubMedGoogle Scholar
  138. Pai VP, Aw S, Shomrat T, Lemire JM, Levin M (2011) Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139(3):623Google Scholar
  139. Papaseit C, Pochon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci USA 97:8364–8368PubMedCentralPubMedGoogle Scholar
  140. Paternoster L, Zhurov AI, Toma AM, Kemp JP, St Pourcain B et al (2012) Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am J Hum Genet 90:478–485PubMedCentralPubMedGoogle Scholar
  141. Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12(2):136–149PubMedCentralPubMedGoogle Scholar
  142. Paulsen M, Legewie S, Eils R, Karaulanov E, Niehrs C (2011) Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development. Proc Natl Acad Sci USA 108:10202–10207PubMedCentralPubMedGoogle Scholar
  143. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444:499–502PubMedGoogle Scholar
  144. Piotrowska K, Zernicka-Goetz M (2001) Role for sperm in spatial patterning of the early mouse embryo. Nature 409(6819):517–521PubMedGoogle Scholar
  145. Pivar S (2009) On the origin of form: evolution by self-organization. North Atlantic Books, BerkeleyGoogle Scholar
  146. Pivar S (2011) The origin of the vertebrate skeleton. Int J Astrobiol 10:45–65Google Scholar
  147. Pletikos M, Sousa AM, Sedmak G, Meyer KA, Zhu Y, Cheng F, Li M, Kawasawa YI, Sestan N (2014) Temporal Specification and Bilaterality of Human Neocortical Topographic Gene Expression. Neuron 81(2):321–332. doi: 10.1016/j.neuron.2013.11.018 Google Scholar
  148. Poyton RO (1983) Memory and membranes: expression of genetic and spatial memory during the assembly of organelle macrocompartments. Mod Cell Biol 2:15–72Google Scholar
  149. Prost J, Guérin T, Martin P, Joanny JF (2010) Coordination and collective properties of molecular motors: theory. Curr Opin Cell Biol 22:14–20PubMedGoogle Scholar
  150. Razeto-Barry P, Maldonado K (2011) Adaptive cis-regulatory changes may involve few mutations. Evolution 65(11):3332–3335PubMedGoogle Scholar
  151. Rebeiz M, Castro B, Liu F, Yue F, Posakony JW (2012) Ancestral and conserved cis-regulatory architectures in developmental control genes. Dev Biol 362(2):282–294PubMedCentralPubMedGoogle Scholar
  152. Renfree MB, Chew KY, Yu H, Pask AJ, Shaw G (2012) HOXA13 and HOXD13 expression during development of the syndactylous digits in the marsupial Macropus eugenii. BMC Dev Biol 12:2PubMedCentralPubMedGoogle Scholar
  153. Reversade B, De Robertis EM (2005) Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123:1147–1160PubMedCentralPubMedGoogle Scholar
  154. Rodriguez-Esteban C, Tsukui T, Yonei S, Magallon J, Tamura K, Izpisua Belmonte JC (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398(6730):814–818PubMedGoogle Scholar
  155. Roensch K, Tazaki A, Chara O, Tanaka EM (2013) Progressive specification rather than intercalation of segments during limb regeneration. Science 342(6164):1375–1379PubMedGoogle Scholar
  156. Rohlf FJ (1986) Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates. Math Geol 18:845–854Google Scholar
  157. Rosette C, Karin M (1995) Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-xB. J Cell Biol 128:1111–1119PubMedGoogle Scholar
  158. Ruvinsky I, Ruvkun G (2003) Functional tests of enhancer conservation between distantly related species. Development 130(21):5133–5142PubMedGoogle Scholar
  159. Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T (2005) Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132(4):797–803PubMedGoogle Scholar
  160. Salazar-Ciudad I, Jernvall J, Newman SA (2003) Mechanisms of pattern formation in development and evolution. Development 130:2027–2037PubMedGoogle Scholar
  161. Sansom R (2011) Ingenious genes: how gene regulation networks evolve to control development. MIT Press, CambridgeGoogle Scholar
  162. Schiffmann Y (1997) Self-organization in biology and development. Prog Biophys Mol Biol 68(2–3):145–205PubMedGoogle Scholar
  163. Schiffmann Y (2012) Maternal-effect genes as the recording genes of Turing-Child patterns: sequential compartmentalization in Drosophila. Prog Biophys Mol Biol 109(1–2):16–32PubMedGoogle Scholar
  164. Schneider I, Shubin NH, Aneas I, Gehrke AR, Dahn RD, Nobrega MA (2011) Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. Proc Natl Acad Sci USA 108(31):12782–12786PubMedCentralPubMedGoogle Scholar
  165. Scimone ML, Srivastava M, Bell GW, Reddien PW (2011) A regulatory program for excretory system regeneration in planarians. Development 138(20):4387–4398PubMedCentralPubMedGoogle Scholar
  166. Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, Schluter D, Kingsley DM (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428(6984):717–723PubMedGoogle Scholar
  167. Shapiro MD, Bell MA, Kingsley DM (2006) Parallel genetic origins of pelvic reduction in vertebrates. Proc Natl Acad Sci USA 103(37):13753–13758PubMedCentralPubMedGoogle Scholar
  168. Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA (2012) Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338(6113):1476–1480PubMedGoogle Scholar
  169. Shi R, Borgens RB (1995) Three-dimensional gradients of voltage during develop-ment of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev Dyn 202:101–114PubMedGoogle Scholar
  170. Shubin N, Dahn R (2004) Lost and found. Nature 428(6984):703–704PubMedGoogle Scholar
  171. Simmons RE, Altwegg R (2010) Necks-for-sex or competing browsers? A critique of ideas on the evolution of giraffe. J Zool 282(1):6–12Google Scholar
  172. Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62(9):2155–2177PubMedCentralPubMedGoogle Scholar
  173. Struhl K (1993) Yeast transcription factors. Curr Opin Cell Biol 5(3):513–520PubMedGoogle Scholar
  174. Sun YH, Chen SP, Wang YP, Hu W, Zhu ZY (2005) Cytoplasmic impact on cross-genus cloned fish derived from transgenic common carp (Cyprinus carpio) nuclei and goldfish (Carassius auratus) enucleated eggs. Biol Reprod 72(3):510–515PubMedGoogle Scholar
  175. Thewissen JGM (1999) The emergence of whales. Springer, New YorkGoogle Scholar
  176. Thom R (1972) Structural stability and morphogenesis. WA Benjamin Reading, MassachusettsGoogle Scholar
  177. Thompson DW (1917) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  178. Tian NM, Price DJ (2005) Why cavefish are blind. BioEssays 27(3):235–238PubMedGoogle Scholar
  179. Tiraihi A, Tiraihi M, Tiraihi T (2011) Self-organization of developing embryo using scale-invariant approach. Theor Biol Med Model 8:17PubMedCentralPubMedGoogle Scholar
  180. Vandenberg LN, Morrie RD, Adams DS (2011) V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev Dyn 240(8):1889–1904PubMedGoogle Scholar
  181. Vandenberg LN, Adams DS, Levin M (2012) Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology. Dev Dyn 241:863–878PubMedCentralPubMedGoogle Scholar
  182. Vogel G (2012) Turing pattern fingered for digit formation. Science 338(6113):1406PubMedGoogle Scholar
  183. Waddington CH (1957) The strategy of the genes. George Allen & Unwin, AustraliaGoogle Scholar
  184. Wang IE, Reddien PW, Wagner DE (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332(6031):811–816PubMedCentralPubMedGoogle Scholar
  185. Wartlick O, Kicheva A, González-Gaitán M (2009) Morphogen gradient formation. Cold Spring Harb Perspect Biol 1(3):a001255PubMedCentralPubMedGoogle Scholar
  186. Wei C, Larsen M, Hoffman MP, Yamada KM (2007) Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng 13(4):721–735PubMedGoogle Scholar
  187. Weibel ER (1991) Fractal geometry: a design principle for living organisms. Am J Physiol 261(6 Pt 1):L361–L369PubMedGoogle Scholar
  188. Weiss PA (1939) Principles of development; a text in experimental embryology. H. Holt and Company, New YorkGoogle Scholar
  189. Weissman A (1892) Das Keimplasm (The Germ Plasm). Fischer, JenaGoogle Scholar
  190. Wells J (2011) Gene regulatory networks in embryos depend on pre-existing spatial coordinates. Abstract #347: Society for Developmental Biology Annual Meeting, ChicagoGoogle Scholar
  191. Wennekamp S, Mesecke S, Nédélec F, Hiiragi T (2013) A self-organization framework for symmetry breaking in the mammalian embryo. Nat Rev Mol Cell Biol 14(7):454–461Google Scholar
  192. Wittkopp PJ (2006) Evolution of cis-regulatory sequence and function in Diptera. Heredity (Edinb) 97(3):139–147Google Scholar
  193. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47PubMedGoogle Scholar
  194. Wolpert L (1989) Positional information revisited. Development 107(Suppl):3–12PubMedGoogle Scholar
  195. Wolpert L (1991) The triumph of the embryo. Oxford University Press, OxfordGoogle Scholar
  196. Wolpert L (2010) Positional information and patterning revisited. J Theor Biol 269(1):359–365PubMedGoogle Scholar
  197. Woltering JM, Noordermeer D, Leleu M, Duboule D (2014) Conservation and Divergence of Regulatory Strategies at Hox Loci and the Origin of Tetrapod Digits. PLoS Biol 12(1):e1001773PubMedCentralPubMedGoogle Scholar
  198. Turing AM (1952) The chemical basis of morphogenesis philosophical transactions of the royal society of London. Series B Biological Sci 237:641Google Scholar
  199. Yim HS et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46(1):88–92PubMedCentralPubMedGoogle Scholar
  200. Yoshida H, Kaneko K (2009) Unified description of regeneration by coupled dynamical systems theory: intercalary/segmented regeneration in insect legs. Dev Dyn 238:1974–1983PubMedGoogle Scholar
  201. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15(5):301–316PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratory of Systems Biology and BioinformaticsManchesterUK

Personalised recommendations