Spatial Analysis of Lung Cancer Mortality in the American West to Improve Allocation of Medical Resources

Abstract

Over 80% of lung cancer incidence in the USA has been linked with smoking, yet causes of lung cancer mortality (LCM) are more complex and have been linked with a range of cultural, environmental, economic and health, lifestyle variables. These all vary spatially yet spatial studies of lung cancer are rare. This paper investigates spatial patterns in county-level LCM and the factors related to it in the western US which has markedly lower rates of LCM than the eastern US. Two variables, not previously investigated, that could be partially responsible for lower rates in the west are included in the analysis. These are elevation and membership of the Church of Jesus Christ of Latter-day Saints (LDS). Analysis involved aspatial and spatial regression, geographically weighted regression (GWR) and univariate and bi-variate local Moran’s I (LMI) cluster analysis. Regression showed that the explanatory power of covariates varies with the area or region studied although the LDS population and elevation, were important both nationally and within the west. GWR analysis showed how correlations between the dependent and independent variables, and regression coefficients, vary spatially within the western region. This showed broad and smooth trends in the non-stationarity of correlations and coefficients with generally different behavior in the coastal compared to mountain west states. Bivariate LMI analysis was helpful in identifying small clusters of problem counties. These included counties in WY and CO that produce oil and gas with large transient male populations that smoke, counties in CA associated with severe air pollution problems and poor rural counties in several states that have high rates of unemployment and lack of medical facilities. This improved understanding of spatial patterns could be used so that screening/educational efforts and location of the medical facilities can be improved to target the locations and population groups most at risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alavanja, M. C., Lubin, J. H., Mahaffey, J. A., & Brownson, R. C. (1999). Residential radon exposure and risk of lung cancer in Missouri. American Journal of Public Health., 89, 1042–1048.

    Google Scholar 

  2. American Cancer Society. (2015). Cancer Facts & Figures for Hispanics/Latinos 2015–2017. Atlanta: American Cancer Society.

    Google Scholar 

  3. Anderson, K., Kliris, J., Murphy, L., Carmella, S., Han, S., Link, C., Bliss, R., Puumala, S., & Hecht, S. (2003). Metabolites of tobacco-specific lung carcinogen in nonsmoking casino patrons. Cancer Epidemiology, Biomarkers & Prevention, 12, 1544–1546.

    Google Scholar 

  4. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27, 93–115.

    Google Scholar 

  5. Anselin, L. (2013). Spatial econometrics: Methods and models. Springer Science & Business Media, 284 pp.

  6. Atkins, G. T., Kim, T., & Munson, J. (2017). Residence in rural areas of the United States and lung Cancer mortality. Disease incidence, treatment disparities, and stage-specific survival. Annals of the American Thoracic Society., 14(3), 403–411.

    Google Scholar 

  7. Bagnardi, V., Randi, G., Lubin, J., Consonni, D., Lam, T. K., Subar, A. F., Goldstein, A. M., Wacholder, S., Bergen, A. W., Tucker, M. A., Decarli, A., Caporaso, N. E., Bertazzi, P. A., & Landi, M. T. (2010). Alcohol consumption and lung Cancer risk in the environment and genetics in lung Cancer etiology (EAGLE) study. American Journal of Epidemiology, 71(1), 36–44.

    Google Scholar 

  8. Blot, W. J., & Fraumeni, J. F. (1975). Arsenical air pollution and lung cancer. Lancet, 2, 142–144.

    Google Scholar 

  9. Blot, W. J., & Fraumeni, J. F. (1976). Geographical patterns of lung cancer: Industrial correlations. American Journal of Epidemiology., 103, 539–550.

    Google Scholar 

  10. Blot, W. J., & Fraumeni, J. F. (1996). Cancers of the lung and pleura. In D. Schottenfeld & J. F. Fraumeni (Eds.), Cancer epidemiology and prevention (2nd ed., pp. 637–665). New York: Oxford University Press.

    Google Scholar 

  11. Blot, W. J., Harrington, J. M., Toledo, A., Hoover, R., Heath, C. W., & Fraumeni, J. F. (1978). Lung Cancer after employment in shipyards during world war II. The New England Journal Medicine, 299, 620–624.

    Google Scholar 

  12. Brown, D. W., Young, K. E., Anda, R. F., & Giles, W. H. (2005). Asthma and risk of death from lung cancer: NHANES II mortality study. Journal of Asthma, 42(7), 597–600.

    Google Scholar 

  13. CDC. (2010). Adult use of prescription opioid pain medications --- Utah, 2008. Morbidity and Mortality Weekly Report, 59, 153–157.

    Google Scholar 

  14. CDC (2017). https://www.cdc.gov/cancer/lung/basic_info/risk_factors.htm

  15. Chen, H., Goldberg, M. S., & Villeneuve, P. J. (2008). A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Reviews in Environmental Health, 23, 243–297.

    Google Scholar 

  16. Chow, W. H., Schuman, L. M., & McLaughlin, J. K. (1992). A cohort study of tobacco use, diet, occupation, and lung cancer mortality. Cancer Causes and Control., 3, 247–254.

    Google Scholar 

  17. Coggon, D., Rose, G., & Barker, D. (2003). Epidemiology for the uninitiated (Third ed.). London: BMJ Books.

  18. Cohen, B. L. (1995). Test of the linear-no threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Physics, 68(2), 157–174.

    Google Scholar 

  19. Cohen, A. J. (2003). Air pollution and lung cancer: What more do we need to know? Thorax., 58, 1010–1012.

    Google Scholar 

  20. Cresanta, J. L. (1992). Epidemiology of cancer in the United States. Primary Care, 19(3), 419–441.

    Google Scholar 

  21. Darmofal, D., (2015). Spatial lag and spatial error models. In Spatial analysis for the social sciences (analytical methods for social research, pp. 96–118). Cambridge University Press, Cambridge.

  22. Devesa, S. S., Grauman, D. J., Blot, W. J., Pennello, G. A., Hoover, R. N. and Fraumeni, J. F. (1999) Atlas of Cancer mortality in the United States 1950-94.

  23. Elmore, K., Flanagan, B., Jones, N. F., & Heitgerd, J. L. (2010). Leveraging geospatial data, technology, and methods for improving the health of communities: Priorities and strategies from an expert panel convened by the CDC. Journal of Community Health, 35, 165–171.

    Google Scholar 

  24. El-Serag, H. B., Tran, T., & Everhart, J. E. (2004). Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology., 126, 460–468.

    Google Scholar 

  25. EPA (2017). https://www.epa.gov/asbestos/us-federal-bans-asbestos.

  26. Ferreccio, C., González, C., Milosavjlevic, V., Marshall, G., Sancha, A. M., & Smith, A. H. (2000). Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology., 11(6), 673–679.

    Google Scholar 

  27. Feskanich, D., Ziegler, R. G., & Michaud, D. S. (2000). Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. Journal of the National Cancer Institute., 92, 1812–1823.

    Google Scholar 

  28. Field, R. W. (2001). A review of residential radon case-control epidemiologic studies performed in the United States. Reviews on Environmental Health., 16, 151–167.

    Google Scholar 

  29. Field, R. W., Steck, D. J., & Smith, B. J. (2000). Residential radon gas exposure and lung cancer: The Iowa radon lung Cancer study. American Journal of Epidemiology., 151, 1091–1102.

    Google Scholar 

  30. Focazio, M.J., Welch, A.H., Watkins, S.A., Helsel, D.R., and Horn, M.A., (1999). A retrospective analysis on the occurrence of arsenic in ground- water resources of the United States and limitations in drinking-water- supply characterizations: U.S. Geological Survey Water-Resources Investigations Report 99–4279, 21 p.

  31. Fotheringham, S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships (282 pp). Chichester: Wiley.

    Google Scholar 

  32. Frost, F. J. (2005). Cancer risks associated with elevated levels of drinking water arsenic exposure. London: IWA Publishing.

    Google Scholar 

  33. Gardner, J. W., & Lyon, J. L. (1982). Cancer in Utah Mormon men by lay priesthood level. American Journal of Epidemiology., 116(2), 243–257.

    Google Scholar 

  34. Goovaerts, P. (2010). Geostatistical analysis of county-level lung Cancer mortality rates in the southeastern United States. Geographical Analysis., 42, 32–52.

    Google Scholar 

  35. Goovaerts, P., & Jacquez, G. M. (2005). Detection of temporal changes in the spatial distribution of cancer rates using local Moran's I and geostatistically simulated spatial neutral models. Journal of Geographical Systems, 7, 137–159.

    Google Scholar 

  36. Haile, R. W., John, E. M., Levine, A. J., Cortessis, V. K., Unger, J. B., Gonzales, M., Ziv, E., Thompson, P., Spruijt-Metz, D., Tucker, K. L., Bernstein, J. L., Rohan, T. E., Ho, G. Y. F., Bondy, M. L., Martinez, M. E., Cook, L., Stern, M. C., Correa, M. C., Wright, J., Schwartz, S. J., Baezconde-Garbanati, L., Blinder, V., Miranda, P., Hayes, R., Friedman-Jimenez, G., Monroe, K. R., Haiman, C. A., Henderson, B. E., Thomas, D. C., & Boffetta, P. (2012). A Review of Cancer in U.S. Hispanic Populations. Cancer Prevention Research, 5(2), 150–163.

    Google Scholar 

  37. Hall, C. C., Roberts, M., Boulis, M., Mo, J., & MacRae, K. D. (2005). Diabetes and the risk of lung Cancer. Diabetes Care, 28, 590–594.

    Google Scholar 

  38. Ham, D. C., Przybeck, T., Strickland, J. R., Luke, D. A., Bierut, L. J., & Evanoff, B. A. (2011). Occupation and workplace policies predict smoking behaviors: Analysis of National Data from the current population survey. Journal of Occupational and Environmental Medicine, 53(11), 1337–1345.

    Google Scholar 

  39. Hashem, B., Tran, T., & Everhart, J. E. (2004). Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology., 126, 460–468.

    Google Scholar 

  40. Hoover, R., Mason, T. J., McKay, F. W., & Fraumeni, J. F. (1975). Cancer by county: New resource for etiologic clues. Science., 189, 1005–1007.

    Google Scholar 

  41. Hu, Z. Y., & Baker, E. (2017). Geographical analysis of lung Cancer mortality rate and PM2.5 using global annual average PM2.5 grids from MODIS and MISR aerosol optical depth. Journal of Geoscience and Environment Protection, 5, 183–197.

    Google Scholar 

  42. IBM Corp. Released 2016. IBM SPSS statistics for windows, version 24.0. IBM Corporation, Armonk, NY.

  43. Jacquez, G. M., Goovaerts, P., Kaufmann, A. and Rommel R. (2014). SpaceStat 4.0 user manual: Software for the space-time analysis of dynamic complex systems, fourth edition, BioMedware.

  44. Jarvis, G. K. and Northcott, H. C. (1987). Religion and differences in morbidity and mortality. Soc Sci Med., 25(7), 813-824.

  45. Jemal, A., Grauman, D., & Devesa, S. (2000). Recent geographic patterns of lung cancer and mesothelioma mortality rates in 49 shipyard counties in the United States, 1970-94. American Journal of Industrial Medicine., 37, 512–521.

    Google Scholar 

  46. Jerrett, M., Burnett, R. T., Ma, R., Pope, C. A., Krewski, D., Newbold, K. B., Thurston, G., Shi, Y., Finkelstein, N., & Calle, E. E. (2005). Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16, 727–736.

    Google Scholar 

  47. Jia, H., Muennig, P., Lubetkin, E. I., & Gold, M. R. (2004). Predicting geographical variations in behavioural risk factors: An analysis of physical and mental healthy days. Journal of Epidemiology and Community Health, 58, 150–155.

    Google Scholar 

  48. Kerry, R., Goovaerts, P., Haining, R. P., & Ceccato, V. (2010). Geostatistical analysis of Car theft and robbery in the Baltic States. Geographical Analysis., 42(1), 53–77.

    Google Scholar 

  49. Kessler, I. I. (1970). Cancer mortality among diabetics. Journal of the National Cancer Institute., 44, 673–686.

    Google Scholar 

  50. Lam, W. K. (2005). Lung cancer in Asian women-the environment and genes. Respirology., 10(4), 408–417.

    Google Scholar 

  51. Lan, Q., Hsiung, C. A., Matsuo, K., Hong, Y. C., Seow, A., Wang, Z., Hosgood 3rd, H. D., Chen, K., Wang, J. C., Chatterjee, N., Hu, W., Wong, M. P., Zheng, W., Caporaso, N., Park, J. Y., Chen, C. J., Kim, Y. H., Kim, Y. T., Landi, M. T., Shen, H., Lawrence, C., Burdett, L., Yeager, M., Yuenger, J., Jacobs, K. B., Chang, I. S., Mitsudomi, T., Kim, H. N., Chang, G. C., Bassig, B. A., Tucker, M., Wei, F., Yin, Z., Wu, C., An, S. J., Qian, B., Lee, V. H., Lu, D., Liu, J., Jeon, H. S., Hsiao, C. F., Sung, J. S., Kim, J. H., Gao, Y. T., Tsai, Y. H., Jung, Y. J., Guo, H., Hu, Z., Hutchinson, A., Wang, W. C., Klein, R., Chung, C. C., Oh, I. J., Chen, K. Y., Berndt, S. I., He, X., Wu, W., Chang, J., Zhang, X. C., Huang, M. S., Zheng, H., Wang, J., Zhao, X., Li, Y., Choi, J. E., Su, W. C., Park, K. H., Sung, S. W., Shu, X. O., Chen, Y. M., Liu, L., Kang, C. H., Hu, L., Chen, C. H., Pao, W., Kim, Y. C., Yang, T. Y., Xu, J., Guan, P., Tan, W., Su, J., Wang, C. L., Li, H., Sihoe, A. D., Zhao, Z., Chen, Y., Choi, Y. Y., Hung, J. Y., Kim, J. S., Yoon, H. I., Cai, Q., Lin, C. C., Park, I. K., Xu, P., Dong, J., Kim, C., He, Q., Perng, R. P., Kohno, T., Kweon, S. S., Chen, C. Y., Vermeulen, R., Wu, J., Lim, W. Y., Chen, K. C., Chow, W. H., Ji, B. T., Chan, J. K., Chu, M., Li, Y. J., Yokota, J., Li, J., Chen, H., Xiang, Y. B., Yu, C. J., Kunitoh, H., Wu, G., Jin, L., Lo, Y. L., Shiraishi, K., Chen, Y. H., Lin, H. C., Wu, T., Wu, Y. L., Yang, P. C., Zhou, B., Shin, M. H., Fraumeni JF Jr, Lin, D., Chanock, S. J., & Rothman, N. (2012). Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nature Genetics., 44, 1330–1335.

    Google Scholar 

  52. Lantz, S. P. M., House, J. S., Lepkowski, J. M., Williams, D. R., Mero, R. P., & Chen, J. (1998). Socioeconomic factors, health behaviors, and mortality results from a nationally representative prospective study of US adults. Journal of the American Medical Association., 279, 1703–1708.

    Google Scholar 

  53. Lee, A. M., & Fraumeni Jr., J. F. (1969). Arsenic and respiratory cancer in man: An occupational study. Journal of the National Cancer Institute., 42(6), 1045–1052.

    Google Scholar 

  54. Lewis, D. R., Pickle, L. W., & Zhu, L. (2017). Recent spatiotemporal patterns of US lung cancer by histologic type. Frontiers in Public Health, 5, 82.

    Google Scholar 

  55. Liverani, S., Lavigne, A., & Blangiardo, M. (2016). Modelling collinear and spatially correlated data. Spatial and Spatio-temporal Epidemiology, 18, 63–73.

    Google Scholar 

  56. Loney, T., & Nagelkerke, N. (2014). The individualistic fallacy, ecological studies and instrumental variables: A causal association. Emerging Themes in Epidemiology, 11(18).

  57. Lyon, J. L., Klauber, M. R., Gardner, J. W., & Smart, C. R. (1976). Cancer incidence in Mormons and non-Mormons in Utah, 1966-1970. New England Journal of Medicine, 294(3), 129–133.

    Google Scholar 

  58. Lyon, J. L., Gardner, J. W., & West, D. W. (1980a). Cancer incidence in Mormons and non-Mormons in Utah during 1967-75. Journal of the National Cancer Institute., 65(5), 1055–1061.

    Google Scholar 

  59. Lyon, J. L., Gardner, J. W., & West, D. W. (1980b). Cancer in Utah: Risk by religion and place of residence. Journal of the National Cancer Institute., 65(5), 1063–1071.

    Google Scholar 

  60. McTiernan, A. (Ed.). (2006). Cancer prevention and management through exercise and weight control. Boca Raton: Taylor & Francis Group.

    Google Scholar 

  61. Merrill, R. (2004). Descriptive Findings Life Expectancy among LDS and Non-LDS in Utah. Demographic Res., 10, 61–62.

  62. Merrill, R. M., & Folsom, J. A. (2005). Female breast cancer incidence and survival in Utah according to religious preference, 1985–1999. BMC Cancer, 5, 49.

    Google Scholar 

  63. Merrill, R. M., & Lyon, J. L. (2005). Cancer incidence among Mormons and non-Mormons in Utah (United States) 1995–1999. Preventive Medicine, 40, 535–541.

    Google Scholar 

  64. Merrill, R. M., Lindsay, G. B., & Lyon, J. L. (1999). Tobacco related cancers in Utah compared to the United States: Quantifying the benefits of the word of wisdom. BYU Studies, 38, 99–105.

    Google Scholar 

  65. Mokdad, A. H., Dwyer-Lindgren, L., Fitzmaurice, C., Stubbs, R. W., Bertozzi-Villa, A., Morozoff, C., Charara, R., Allen, C., Naghavi, M., & Murray, C. J. (2017). Trends and patterns of disparities in cancer mortality among US counties, 1980–2014. JAMA, 317(4), 388–406. https://doi.org/10.1001/jama.2016.20324.

    Article  Google Scholar 

  66. Molitor, J., Su, J. G., Molitor, N. T., Rubio, V. G., Richardson, S., Hastie, D., Morello-Frosch, R., & Jerrett, M. (2011). Identifying vulnerable populations through an examination of the association between multipollutant profiles and poverty. Environmental Science & Technology, 45(18), 7754–7760.

    Google Scholar 

  67. Murillo, G., & Mehta, R. G. (2001). Cruciferous vegetables and cancer prevention. Nutrition and Cancer, 41, 17–28.

    Google Scholar 

  68. Oliver, M. A., Badr, I. (1995). Determining the spatial scale of variation in soil radon concentration. Mathematical Geology, 27(8), 893–922. https://doi.org/10.1007/BF02091658.

  69. O’Reilly, K. M. A., McLaughlin, A. M., & Beckett, W. S. (2007). Asbestos-related lung disease. American Family Physician, 75, 683–688.

    Google Scholar 

  70. Prescott, E., Grønbaek, M., & Becker, U. (1999). Alcohol intake and the risk of lung cancer: Influence of type of alcoholic beverage. American Journal of Epidemiology, 149(5), 463–470.

    Google Scholar 

  71. Putila, J. J., & Guo, N. L. (2011). Association of Arsenic Exposure with lung Cancer incidence rates in the United States. PLoS One, 6(10), e25886.

    Google Scholar 

  72. Ryker, S.J., (2001). Mapping arsenic in groundwater-- A real need, but a hard problem: Geotimes Newsmagazine of the Earth Sciences, 46 (11), 34–36.

  73. Simeonov, K. P., & Himmelstein, D. S. (2015). Lung cancer incidence decreases with elevation: Evidence for oxygen as an inhaled carcinogen. PeerJ, 3, 705.

    Google Scholar 

  74. Spector, L. G., Klebanoff, M. A., Feusner, J. H., Georgieff, M. K., Ross. J. A. (2005). Childhood cancer following neonatal oxygen supplementation. The Journal of Pediatrics 147(1), 27–31. https://doi.org/10.1016/j.jpeds.2005.03.008.

  75. Sun, B., Karin, M. (1995). Obesity, inflammation, and liver cancer. J Hepatol., 56(3), 704–713. https://doi.org/10.1016/j.jhep.2011.09.020.

  76. Sung H. J., Ma, W., Starost, M. F., Lago, C. U., Lim, P. K., Sack, M. N., et al. (2011) Ambient Oxygen Promotes Tumorigenesis. PLoS ONE 6(5), e19785. https://doi.org/10.1371/journal.pone.0019785.

  77. Tabatabai, M. A., Kengwoung-Keumo, J.J., Oates, G. R. et al. (2016). Racial and gender disparities in incidence of lung and bronchus cancer in the United States: A longitudinal analysis PLoS One, 11 (9), p. e0162949, https://doi.org/10.1371/journal.pone.0162949.

  78. Tardon, A., Lee, W. J., & Delgado-Rodriguez, M. (2005). Leisure-time physical activity and lung cancer: A meta-analysis. Cancer Causes and Control, 16, 389–397.

    Google Scholar 

  79. Thiersch, M., Swenson E. R., Haider T., Gassmann M. (2017). Reduced cancer mortality at high altitude: The role of glucose, lipids, iron and physical activity. Exp Cell Res., 356(2), 209–216. https://doi.org/10.1016/j.yexcr.2017.03.048.

  80. Trout, D., Decker, J., Mueller, C., Bernert, J. T., & Pirkle, J. (1998). Exposure of casino employees to environmental tobacco smoke. JOEM, 40(3), 270–276.

    Google Scholar 

  81. U.S. Cancer Statistics Working Group. (2017). United States Cancer statistics: 1999–2014 incidence and mortality web-based report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute.

    Google Scholar 

  82. U.S. Department of Health and Human Services (1989). Reducing the health consequences of smoking—25 years of progress: a report of the Surgeon General. Rockville, MD: Office on Smoking and Health. DHHS Publ. No. (CDC) 89–8411.

  83. Voorrips, L. E., Goldbohm, R. A., & Verhoeven, D. T. (2000). Vegetable and fruit consumption and lung cancer risk in the Netherlands: Cohort study on diet and cancer. Cancer Causes and Control, 11, 101–115.

    Google Scholar 

  84. Wilhelm, M., & Ritz, B. (2005). Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environmental Health Perspectives., 113(9), 1212–1221.

    Google Scholar 

  85. Woods, L. M., Rachet, B., & Coleman, M. P. (2006). Origins of socio-economic inequalities in Cancer survival: A review. Annals of Oncology, 17, 5–19.

    Google Scholar 

  86. Yang, Y., Dong, J., Sun, K., Zhao, L., Zhao, F., Wang, L., & Jiao, Y. (2013). Obesity and incidence of lung cancer: A meta-analysis. International Journal of Cancer., 132, 1162–1169.

    Google Scholar 

Download references

Acknowledgements

The research conducted by the second author was funded by the grant 1R21 ES021570-01A1 and grant R44-CA192520-02 from the National Cancer Institute (NCI). Views stated in this publication do not necessarily represent the official views of the NCI. Scott Shumway, Cameron Eaton and Austin Parker undergraduates in the BYU Geography department at the time assisted with extraction and pre-processing of some of the data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruth Kerry.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kerry, R., Goovaerts, P., Ingram, B. et al. Spatial Analysis of Lung Cancer Mortality in the American West to Improve Allocation of Medical Resources. Appl. Spatial Analysis 13, 823–850 (2020). https://doi.org/10.1007/s12061-019-09331-5

Download citation

Keywords

  • Lung Cancer
  • Spatial analysis
  • LDS faith
  • Elevation
  • American West