Skip to main content

Advertisement

Log in

A Spatial Analysis of Incident Location and Prehospital Mortality for Two United Kingdom Helicopter Emergency Medical Services (HEMS)

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

Most trauma and out of hospital cardiac arrest (OHCA) deaths occur prior to arrival at hospital, with increased risk for rural compared to urban patients. Essex and Hertfordshire Air Ambulance Trust (EHAAT) and Kent Surrey Sussex Air Ambulance Trust (KSS) provide a physician-paramedic Helicopter Emergency Medical Service (HEMS) in two regions of the United Kingdom. We investigated whether an association exists between prehospital mortality and distance from care in HEMS patients. We performed a retrospective study using spatial statistics to investigate the geographic distribution of scene outcome (alive versus deceased). We also performed multiple logistic regression of outcome against quartiles of distance from base to scene and a relative risk (RR) estimation over the operational areas. Organisations were analysed separately to assess consistency of spatial relationships. 2680 EHAAT and 4213 KSS patients met the inclusion criteria. Ripley’s K and Cross K functions indicated that outcomes (death and leaving the scene alive) cluster together. For KSS distance was not associated with outcome, for EHAAT distance was a significant predictor of mortality at furthest distance (41 to 95 km; OR 5.82, 95%CI 1.63 to 37.18, p = 0.019). Only one area of KSS and no areas of EHAAT had an increased RR of mortality. In contrast to previous research of pre-hospital patients, we found little evidence of geographic difference in scene outcome for trauma patients attended by the two HEMS services. Increased mortality risk for OHCA at the furthest distance from helicopter base was found in one organisation; a single area of increased RR of mortality was found for the other organisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel, G. A., Barclay, M. E., & Payne, R. A. (2016). Adjusted indices of multiple deprivation to enable comparisons within and between constituent countries of the UK including an illustration using mortality rates. BMJ Open, 6(11), e012750.

    Article  Google Scholar 

  • Alarhayem, A. Q., Myers, J. G., Dent, D., Liao, L., Muir, M., Mueller, D., Nicholson, S., Cestero, R., Johnson, M. C., Stewart, R., O'Keefe, G., & Eastridge, B. J. (2016). Time is the enemy: Mortality in trauma patients with hemorrhage from torso injury occurs long before the "golden hour". American Journal of Surgery, 212(6), 1101–1105. https://doi.org/10.1016/j.amjsurg.2016.08.018.

    Article  Google Scholar 

  • Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point patterns: Methodology and applications with R.

  • Beck, B., Bray, J. E., Cameron, P., Straney, L., Andrew, E., Bernard, S., & Smith, K. (2017). Predicting outcomes in traumatic out-of-hospital cardiac arrest: The relevance of Utstein factors. Emergency Medicine Journal : EMJ, 34(12), 786–792. https://doi.org/10.1136/emermed-2016-206330.

    Article  Google Scholar 

  • Bell, N., Simons, R., Hameed, S. M., Schuurman, N., & Wheeler, S. (2012). Does direct transport to provincial burn centres improve outcomes? A spatial epidemiology of severe burn injury in British Columbia, 2001-2006. Canadian Journal of Surgery, 55(2), 110–116. https://doi.org/10.1503/cjs.014708.

    Article  Google Scholar 

  • Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). NY: Springer Science & Business Media.

    Book  Google Scholar 

  • Bivand, R., Keitt, T., & Rowlingson, B. (2019). rgdal: Bindings for the “Geospatial” Data Abstraction Library. Package=rgdal.

  • Brooks, S. C., Schmicker, R. H., Cheskes, S., Christenson, J., Craig, A., Daya, M., Kudenchuk P.J., Nichol G., Zive D., Morrison L.J., Resuscitation Outcomes Consortium Investigators. (2017). Variability in the initiation of resuscitation attempts by emergency medical services personnel during out-of-hospital cardiac arrest. Resuscitation, 117, 102–108. https://doi.org/10.1016/j.resuscitation.2017.06.009.

  • Brown, J. B., Gestring, M. L., Stassen, N. A., Forsythe, R. M., Billiar, T. R., Peitzman, A. B., & Sperry, J. L. (2016). Geographic variation in outcome benefits of helicopter transport for trauma in the United States: A retrospective cohort study. Annals of Surgery, 263(2), 406–412. https://doi.org/10.1097/SLA.0000000000001047.

    Article  Google Scholar 

  • Brown, J. B., Rosengart, M. R., Billiar, T. R., Peitzman, A. B., & Sperry, J. L. (2017). Distance matters: Effect of geographic trauma system resource organization on fatal motor vehicle collisions. Journal of Trauma and Acute Care Surgery, 83(1), 111–118. https://doi.org/10.1097/TA.0000000000001508.

    Article  Google Scholar 

  • Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics: Simulation and Computation, 39(4), 860–864. https://doi.org/10.1080/03610911003650383.

    Article  Google Scholar 

  • Chen, C.-C., Chen, C.-W., Ho, C.-K., Liu, I.-C., Lin, B.-C., & Chan, T.-C. (2015). Spatial variation and resuscitation process affecting survival after out-of-hospital cardiac arrests (OHCA). PLoS One, 10(12), e0144882. https://doi.org/10.1371/journal.pone.0144882.

    Article  Google Scholar 

  • Clements, T. W., Vogt, K., Hameed, S. M., Parry, N., Kirkpatrick, A. W., Grondin, S. C., Dixon, E., McKee, J., & Ball, C. G. (2017). Does increased prehospital time lead to a “trial of life” effect for patients with blunt trauma? Journal of Surgical Research, 216, 103–108. https://doi.org/10.1016/j.jss.2017.04.027.

    Article  Google Scholar 

  • Davies, T. M., Marshall, J. C., & Hazelton, M. L. (2017). Tutorial on kernel estimation of continuous spatial and spatiotemporal relative risk. Statistics in Medicine, 37(7), 1191–1221. https://doi.org/10.1002/sim.7577.

    Article  Google Scholar 

  • Davies, T. M., Hazelton, M. L. & Marshall, J. C. (2011). sparr: Analyzing Spatial Relative Risk Using Fixed and Adaptive Kernel Density Estimation in R.Journal of Statistical Software, 39 , 1–14.

  • Degano, I. R., Salomaa, V., Veronesi, G., Ferrieres, J., Kirchberger, I., Laks, T., et al. (2015). Twenty-five-year trends in myocardial infarction attack and mortality rates, and case-fatality, in six European populations. Heart (British Cardiac Society)., 101(17), 1413–1421. https://doi.org/10.1136/heartjnl-2014-307310.

    Article  Google Scholar 

  • Dixon, P. M. (2002). Ripley's K function. Encyclopedia of Environmetrics, 1796–1803.

  • Dworkis, D. A., Weiner, S. G., Liao, V. T., Rabickow, D., & Goldberg, S. A. (2018). Geospatial clustering of opioid-related emergency medical services runs for public deployment of naloxone. The Western Journal of Emergency Medicine, 19(4), 641–648.

    Article  Google Scholar 

  • Earnest, A., Hock Ong, M. E., Shahidah, N., Min Ng, W., Foo, C., & Nott, D. J. (2012). Spatial analysis of ambulance response times related to prehospital cardiac arrests in the city-state of Singapore. Prehospital Emergency Care, 16(2), 256–265. https://doi.org/10.3109/10903127.2011.615974.

    Article  Google Scholar 

  • Evans, E. G., Hudson, A., McWhirter, E., & Lyon, R. (2014). A review of the activation triggers and reasons for stand downs of a helicopter emergency medical service (HEMS). Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 22(1), P5.

    Article  Google Scholar 

  • Garner, A. A., & van den Berg, P. L. (2017). Locating helicopter emergency medical service bases to optimise population coverage versus average response time, 1–11. https://doi.org/10.1186/s12873-017-0142-5.

  • Giannakopoulos, G. F., Bloemers, F. W., Lubbers, W. D., Christiaans, H. M. T., van Exter, P., de Lange-de Klerk, E. S. M., et al. (2012). Criteria for cancelling helicopter emergency medical services (HEMS) dispatches. Emergency Medicine Journal : EMJ, 29(7), 582–586. https://doi.org/10.1136/emj.2011.112896.

    Article  Google Scholar 

  • Gonzalez Balverde, M., Ramirez Lizardo, E. J., Cardona Munoz, E. G., Totsuka Sutto, S. E., & Garcia Benavides, L. (2013). Prognostic value of the lethal triad among patients with multiple trauma. Revista Médica de Chile, 141(11), 1420–1426. https://doi.org/10.4067/S0034-98872013001100008.

    Article  Google Scholar 

  • Gräsner, J.-T., Lefering, R., Koster, R. W., et al. (2016). EuReCa ONE, 27 nations, ONE Europe, ONE registry: A prospective one month analysis of out-ofhospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation, 105, 188–195. https://doi.org/10.1016/j.resuscitation.2016.06.004

  • Haider, A. H., Crompton, J. G., Oyetunji, T., Stevens, K. A., Efron, D. T., Kieninger, A. N., Chang, D. C., Cornwell, E. E., III, & Haut, E. R. (2009). Females have fewer complications and lower mortality following trauma than similarly injured males: A risk adjusted analysis of adults in the National Trauma Data Bank. Surgery, 146(2), 308–315. https://doi.org/10.1016/j.surg.2009.05.006.

    Article  Google Scholar 

  • Hansen, M., Loker, W., & Warden, C. (2016). Geospatial analysis of pediatric EMS run density and endotracheal intubation. The Western Journal of Emergency Medicine, 17(5), 656–661. https://doi.org/10.5811/westjem.2016.7.30241.

    Article  Google Scholar 

  • Harmsen, A. M. K., Giannakopoulos, G., Franschman, G., Christiaans, H., & Bloemers, F. (2017). Limitations in prehospital communication between trauma helicopter, ambulance services, and dispatch centers. The Journal of Emergency Medicine, 52(4), 504–512.

    Article  Google Scholar 

  • Hepple, D. J., Durrand, J. W., Bouamra, O., & Godfrey, P. (2018). Impact of a physician-led pre-hospital critical care team on outcomes after major trauma. Anaesthesia, 74(4), 473–479. https://doi.org/10.1111/anae.14501.

    Article  Google Scholar 

  • Jarman, M. P., Castillo, R. C., Carlini, A. R., Kodadek, L. M., & Haider, A. H. (2016). Rural risk: Geographic disparities in trauma mortality. Surgery, 160(6), 1551–1559. https://doi.org/10.1016/j.surg.2016.06.020

  • Jarman, M. P., Haut, E. R., Curriero, F. C., & Castillo, R. C. (2018). Mapping areas with concentrated risk of trauma mortality: A first step toward mitigating geographic and socioeconomic disparities in trauma. Journal of Trauma and Acute Care Surgery, 85(1), 54–61.

    Article  Google Scholar 

  • Jones, A. P., Langford, I. H., & Bentham, G. (1996). The application of K-function analysis to the geographical distribution of road traffic accident outcomes in Norfolk, England. Social Science & Medicine (1982), 42(6), 879–885.

  • Lipsky, A. M., Karsteadt, L. L., Gausche-hill, M., Hartmans, S., Bongard, F. S., Cryer, H. G., et al. (2014). A comparison of rural versus urban trauma care. Journal of Emergencies, Trauma, and Shock, 7(1), 41–46. https://doi.org/10.4103/0974-2700.125639

  • Masterson, S., Wright, P., O'Donnell, C., Vellinga, A., Murphy, A. W., Hennelly, D., et al. (2015). Urban and rural differences in out-of-hospital cardiac arrest in Ireland. Resuscitation, 91, 42–47. https://doi.org/10.1016/j.resuscitation.2015.03.012.

    Article  Google Scholar 

  • McQueen, C., Crombie, N., Cormack, S., George, A., & Wheaton, S. (2015). Utilisation of a helicopter emergency medical service (HEMS) for equestrian accidents in a regional major trauma network in the United Kingdom. Injury, 46(5), 781–786.

    Article  Google Scholar 

  • Medrano, N. W., Villarreal, C. L., Price, M. A., MacKenzie, E., Nolte, K. B., Phillips, M. J., et al. (2019). Multi-institutional multidisciplinary injury mortality investigation in the civilian pre-hospital environment (MIMIC): A methodology for reliably measuring prehospital time and distance to definitive care. TSACO, 4(1), e000309.

    Google Scholar 

  • Melo R A, Rodriguez D & Zarruk D (2018). gmapsdistance: Distance and Travel Time Between Two Points from Google Maps. R package version 3.4. https://CRAN.R-project.org/package=gmapsdistance. Last Accessed 06 June 2019

  • Munro, S., Joy, M., de Coverly, R., Salmon, M., Williams, J., & Lyon, R. M. (2018). A novel method of non-clinical dispatch is associated with a higher rate of critical helicopter emergency medical service intervention. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 26(1), 84. https://doi.org/10.1186/s13049-018-0551-9.

    Article  Google Scholar 

  • Oliver, G. J., Walter, D. P., & Redmond, A. D. (2017). Prehospital deaths from trauma: Are injuries survivable and do bystanders help? Injury, 48(5), 985–991. https://doi.org/10.1016/j.injury.2017.02.026.

    Article  Google Scholar 

  • Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49(12), 1373–1379.

    Article  Google Scholar 

  • Pham, H., Puckett, Y., & Dissanaike, S. (2017). Faster on-scene times associated with decreased mortality in helicopter emergency medical services (HEMS) transported trauma patients. Trauma Surgery & Acute Care Open, 2(1), e000122–e000125. https://doi.org/10.1136/tsaco-2017-000122.

    Article  Google Scholar 

  • Røislien, J., van den Berg, P. L., Lindner, T., Zakariassen, E., Uleberg, O., Aardal, K., & van Essen, J. T. (2018). Comparing population and incident data for optimal air ambulance base locations in Norway. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 26(1), 42. https://doi.org/10.1186/s13049-018-0511-4.

    Article  Google Scholar 

  • Simons, R., Brasher, P., Taulu, T., Lakha, N., Molnar, N., Caron, N., Schuurman, N., Evans, D., & Hameed, M. (2010). A population-based analysis of injury-related deaths and access to trauma care in rural-remote Northwest British Columbia. The Journal of Trauma: Injury, Infection, and Critical Care, 69(1), 11–19. https://doi.org/10.1097/TA.0b013e3181e17b39.

    Article  Google Scholar 

  • Tilman, M., & Davies, M. L. H. J. C. M. (2011). Sparr: Analyzing spatial relative risk using fixed and adaptive kernel density estimation in R. Journal of Statistical Software, 39, 1–14.

    Google Scholar 

  • UK data service census boundry data. (n.d.). UK data service census boundry data. https://census.ukdataservice.ac.uk/get-data/boundary-data. Accessed 2 February 2018.

  • UK Grid Reference Finder. (n.d.)https://gridreferencefinder.com/index.php. Last Accessed 06 June 2019.

  • Vasilyeva, K., Widener, M. J., Galvagno, S. M. J., & Ginsberg, Z. (2017). Spatial methods for evaluating critical care and trauma transport: A scoping review. Journal of Critical Care, 43, 265–270. https://doi.org/10.1016/j.jcrc.2017.08.039.

    Article  Google Scholar 

  • Vitolo, C., Fry, M., & Buytaert, W. (2016). Rnrfa: An R package to retrieve, filter and visualize data from the UK National River Flow Archive. The R Journal, 8(2), 102–116.

    Article  Google Scholar 

  • Wilson, S. L., & Gangathimmaiah, V. (2017). Does prehospital management by doctors affect outcome in major trauma? A systematic review. Journal of Trauma and Acute Care Surgery, 83(5), 965–974. https://doi.org/10.1097/TA.0000000000001559.

    Article  Google Scholar 

  • Wisborg, T., Hoylo, T., & Siem, G. (2003). Death after injury in rural Norway: High rate of mortality and prehospital death. Acta Anaesthesiologica Scandinavica, 47(2), 153–156.

    Article  Google Scholar 

  • Yamada, I., & Thill, J.-C. (2004). Comparison of planar and network K-functions in traffic accident analysis. Journal of Transport Geography, 12(2), 149–158. https://doi.org/10.1016/j.jtrangeo.2003.10.006

Download references

Acknowledgements

The authors would like to thank the paramedics and doctors of EHAAT and KSS for clinical care of patients and data entry following each mission. We would also like to thank both organisations for allowing us to access the data for this study.

Author information

Authors and Affiliations

Authors

Contributions

MM conceived of the study, MM, ID-B, DB and RL all contributed to the study design, ID-B and DB provided the data, MM performed the analysis, MM, ID-B, DB and RL all interpreted the data. MM drafted the manuscript, ID-B, DB and RL all contributed to manuscript review and revision.

Corresponding author

Correspondence to Matthew Miller.

Ethics declarations

Conflict of Interest

MM reports no conflict of interest.

ID-B reports no conflict of interest.

DB reports no conflict of interest.

RL reports no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 471 kb)

ESM 2

(DOCX 8689 kb)

ESM 3

(PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M., Delroy-Buelles, I., Bootland, D. et al. A Spatial Analysis of Incident Location and Prehospital Mortality for Two United Kingdom Helicopter Emergency Medical Services (HEMS). Appl. Spatial Analysis 13, 575–590 (2020). https://doi.org/10.1007/s12061-019-09318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-019-09318-2

Keywords

Navigation