Wander: A Smartphone App for Sensing Sociability

Abstract

This paper presents a new smartphone application, Wander, to capture high resolution space-time information on urban dwellers. We detail both the mechanism as well as the analytic platform through which broad scale spatial mobility studies can be mounted to reveal how individuals move through spaces and interact with the social and physical elements of urban life. Results demonstrate the utility of Wander for collecting spatial mobility data that for the first time enables empirical testing of theories first forwarded by urban sociologists at the turn of the 20th Century. We use data collected through the Wander application to examine the timing and regularity of spatial mobility patterns, how these are related to particular urban features, and differ by participant characteristics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    Using either the iOS Map Kit services or the Google Play Services (Maps).

  2. 2.

    A distance of 200 m was adopted following a series of tests that were designed to determine the most appropriate threshold that best captured mobility at a fine spatial scale whilst minimising battery use.

  3. 3.

    The temporary mobility profile depicts the count of mobility (all mobility and walking mobility) by hour. As such, this permits a broad comparison of the temporal distribution between both mobility types and participants.

  4. 4.

    Spatial mobility is a measure of the density of all point features falling within a given radius. Each participant is classified using the same class boundaries employing via a natural breaks classification: ‘Low’ spatial mobility = 1.79 points per square kilometre; ‘High’ spatial mobility = 457.11 points per square kilometre and higher.

  5. 5.

    Spatial mobility is a measure of the density of walking point features falling within a given radius. Each participant is classified using the same class boundaries employing via a natural breaks classification: ‘Low’ spatial mobility = 4.91 points per square kilometre; ‘High’ spatial mobility = 1,095.64 points per square kilometre and higher.

References

  1. Ahas, R., Aasa, A., Silm, S., & Tiru, M. (2010). Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C: Emerging Technologies, 18(1), 45–54.

    Article  Google Scholar 

  2. Assemi, B., Safi, H., Mesbah, M., & Ferreira, L. (2016). Developing and validating a Statistical model for travel mode identification on smartphones, intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 17(7), 1920–1931.

    Article  Google Scholar 

  3. Auld, J., Williams, C., Mohammadian, A., & Nelson, P. (2009). An automated GPS-based prompted recall survey with learning algorithms. Transportation Letters, 1(1), 59–79.

    Article  Google Scholar 

  4. Axhausen, K. W., Zimmermann, A., Schönfelder, S., Rindsfüser, G., & Haupt, T. (2002). Observing the rhythms of daily life: A six-week travel diary. Transportation, 29(2), 95–124.

    Article  Google Scholar 

  5. Bauman, Z. (2000). Liquid Modernity. Cambridge: Polity Press.

    Google Scholar 

  6. Birenboim, A., & Shoval, N. (2016). Mobility research in the age of the smartphone. Annals of the American Association of Geographers, 106(2), 283–291.

    Google Scholar 

  7. Bolan, M. (1997). The mobility experience and neighborhood Attachment. Demography, 34, 225–237.

    Article  Google Scholar 

  8. Bourdieu, P. (1990). The logic of practice. Stanford: Stanford University Press.

    Google Scholar 

  9. Browning, C. R., Byron, R. A., Calder, C. A., Krivo, L. J., Kwan, M. P., Lee, J. Y., & Peterson, R. D. (2010). Commercial density, residential concentration, and crime: Land use patterns and violence in neighborhood context. Journal of Research in Crime and Delinquency, 47(3), 329–357.

    Article  Google Scholar 

  10. Bryson, A., & MacKerron, G. (2016). Are you happy while you work? The Economic Journal. doi:10.1111/ecoj.12269.

  11. Burke, J. A., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., & Srivastava, M. B. (2006). Participatory sensing. Boulder: Center for Embedded Network Sensing.

    Google Scholar 

  12. Carp, F. M. (1971). Walking as a means of transportation for retired people. The Gerontologist, 11(2 part 1), 104–111.

    Article  Google Scholar 

  13. Chen, J., Shaw, S.-L., Yu, H., Lu, F., Chai, Y., & Jia, Q. (2011). Exploratory data analysis of activity diary data: A space–time GIS approach. Journal of Transport Geography, 19(3), 394–404.

    Article  Google Scholar 

  14. Dannenberg, A. L., Jackson, R. J., Frumkin, H., Schieber, R. A., Pratt, M., Kochtitzky, C., & Tilson, H. H. (2003). The impact of community design and land-use choices on public health: A scientific research agenda. American Journal of Public Health, 93(9), 1500–1508.

    Article  Google Scholar 

  15. Dharmowijoyo, D. B., Susilo, Y. O., Karlström, A., & Adiredja, L. S. (2015). Collecting a multi-dimensional three-weeks household time-use and activity diary in the Bandung metropolitan area, Indonesia. Transportation Research Part A: Policy and Practice, 80, 231–246.

    Google Scholar 

  16. Doyle, S., Kelly-Schwartz, A., Schlossberg, M., & Stockard, J. (2006). Active community environments and health: The relationship of walkable and safe communities to individual health. Journal of the American Planning Association, 72(1), 19–31.

    Article  Google Scholar 

  17. Du Toit, L., Cerin, E., Leslie, E., & Owen, N. (2007). Does walking in the neighbourhood enhance local sociability?.Urban. Studies, 44(9), 1677–1695.

    Google Scholar 

  18. Ettema, D., & Smajic, I. (2014). Walking, places and wellbeing. The Geographical Journal, 181(2), 102–109.

    Article  Google Scholar 

  19. Farber, S., O’Kelly, M., Miller, H., & Neutens, T. (2015). Measuring segregation using patterns of daily travel behaviour: A social interaction based model of exposure. Journal of Transport Geography, 49, 26–38.

    Article  Google Scholar 

  20. Foster, S., Giles-Corti, B., & Knuiman, M. (2010). Neighbourhood design and fear of crime: A social-ecological examination of the correlates of residents’ fear in new suburban housing developments. Health & Place, 16(6), 1156–1165.

    Article  Google Scholar 

  21. Franck, K., & Stevens, Q. (2007). Loose space: Possibility and diversity in urban life. London: Routledge.

    Google Scholar 

  22. Garcia, B., Welford, J., & Smith, B. (2015). Using a smartphone ‘app’ in qualitative research: The good, the bad and the ugly. Qualitative Reserch. doi:10.1177/1468794115593335.

  23. Giddens, A. (1981). A contemporary critique of historical materialism (Vol. 1. Power, Property and the State). Berkeley: University of California Press.

    Book  Google Scholar 

  24. Giddens, A. (1991). Modernity and self identity: Self and society in the late modern age. Cambridge: Polity Press.

    Google Scholar 

  25. Greaves, S., Ellison, A., Ellison, R., Rance, D., Standen, C., Rissel, C., & Crane, M. (2015). A web-based diary and companion smartphone app for travel/activity surveys. Transportation Research Procedia, 11, 297–310.

    Article  Google Scholar 

  26. Hägerstraand, T. (1970). What about people in regional science? Papers in Regional Science, 24(1), 7–24.

    Article  Google Scholar 

  27. Hannam, K., Sheller, M., & Urry, J. (2006). Editorial: Mobilities, Immobilities and moorings. Mobilities, 1(1), 1–22.

    Article  Google Scholar 

  28. Heggie, I. G. (1978). Putting behaviour into behavioural models of travel choice. Journal of the Operational Research Society, 29(6), 541–550.

    Article  Google Scholar 

  29. Hemminki, S., Nurmi, P., & Tarkoma, S. (2013). Accelerometer-based transportation mode detection on smartphones. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems (pp. 13). ACM.

  30. Isaacson, M., & Shoval, N. (2006). Application of tracking technologies to the study of pedestrian spatial behavior. The Professional Geographer, 58(2), 172–183.

    Article  Google Scholar 

  31. Isaacson, M., Shoval, N., Wahl, H. W., Oswald, F., & Auslander, G. (2016). Compliance and data quality in GPS-based studies. Transportation, 43(1), 25–36.

    Article  Google Scholar 

  32. Jensen, O. (2009). Flows of meaning, cultures of movements – Urban mobility as meaningful everyday life practice. Mobilities, 4(1), 139–158.

    Article  Google Scholar 

  33. Knox, P. (2005). Creating ordinary places: Slow cities in a fast world. Journal of Urban Design, 10(1), 1–11.

    Article  Google Scholar 

  34. Kwan, M. P. (2004). GIS methods in time-geographic research: Geocomputation and geovisualization of human activity patterns. Geografiska Annaler: Series B, Human Geography, 86(4), 267–280.

    Article  Google Scholar 

  35. Kwan, M. P., and Lee, J. (2004). Geovisualization of human activity patterns using 3D GIS: a time-geographic approach. In M. Goodchild and D G. Janelle, (Eds) Spatially Integrated Social Science: Examples in Best Practice. Oxford: Oxford University Press. 27.

  36. Laws, G. (1997). Women’s life courses, spatial mobility, and state policies. In J. P. Jones III, H. J. Nast, & S. M. Roberts (Eds.), Thresholds in feminist geography: Difference, methodology, representation (pp. 47–64). New York: Rowman and Littlefield.

    Google Scholar 

  37. Lefebvre, H. (1991). The production of space. Oxford: Blackwell Publishers.

    Google Scholar 

  38. Leyden, K. M. (2003). Social capital and the built environment: The importance of walkable neighborhoods. American Journal of Public Health, 93(9), 1546–1551.

    Article  Google Scholar 

  39. Lofland, L. (1998). The public realm: Exploring the City’s quintessential social territory. Hawthorne: Aldine de Gruyter.

    Google Scholar 

  40. Lorimer, H. (2005). Cultural geography: The busyness of being ‘more-than-representational’. Progress in Human Geography, 29(1), 83–94.

    Article  Google Scholar 

  41. Maas, J., Van Dillen, S. M., Verheij, R. A., & Groenewegen, P. P. (2009). Social contacts as a possible mechanism behind the relation between green space and health. Health & Place, 15(2), 586–595.

    Article  Google Scholar 

  42. McCord, E., Ratcliffe, J., Garcia, R., & Taylor, R. (2007). Nonresidential crime attractors and generators elevate perceived neighborhod crime and incivilities. Journal of Research in Crime and Delinquency, 44(3), 295–320.

    Article  Google Scholar 

  43. Mesch, G. S., & Orit, M. (1998). Social ties, environmental perception, and local Attachment. Environment and Behavior, 30, 504–519.

    Article  Google Scholar 

  44. Oldenburg, R. (2001). Celebrating the third place: Inspiring stories about the great good places at the heart of our communities. Boston: Da Capo Publishers.

    Google Scholar 

  45. Oldenburg, R., & Brissett, D. (1982). The third place. Qualitative Sociology, 5(4), 265–284.

    Article  Google Scholar 

  46. Oppermann, M. (1997). First-time and repeat visitors to New Zealand. Tourism Management, 18(3), 177–181.

    Article  Google Scholar 

  47. Ottensmann, J. R. (1975). The changing spatial structure of American cities. Lexington Books.

  48. Palmer, J. R. B., Espenshade, T. J., Bartumeus, F., Chung, C. Y., Ozgencil, N. E., & Li, K. (2013). New approaches to human mobility: Using mobile phones for demographic research. Demography, 50(3), 1105–1128.

    Article  Google Scholar 

  49. Park, R., Burgess, E., & McKenzie, R. (1925). The City. Chicago: University of Chicago Press.

    Google Scholar 

  50. Parkes, D., & Thrift, N. (1980). Times, spaces and places: A Chronogeographic perspective. NY: Wiley.

    Google Scholar 

  51. Pas, E. I. (1988). Weekly travel-activity behavior. Transportation, 15(1–2), 89–109.

    Google Scholar 

  52. Patel, R., Sulzberger, L., Li, G., Mair, J., Morley, H., Shing, M. N., & Wilson, N. (2015). Smartphone apps for weight loss and smoking cessation: Quality ranking of 120 apps. The New Zealand Medical Journal, 128(1421), 73–76.

    Google Scholar 

  53. Peschardt, K. K., Schipperijn, J., & Stigsdotter, U. K. (2012). Use of small public urban green spaces (SPUGS). Urban Forestry & Urban Greening, 11(3), 235–244.

    Article  Google Scholar 

  54. Putnam, R. (2000). Bowling alone: The collapse and revival of American community. New York: Simon & Schuster.

    Book  Google Scholar 

  55. Raymen, T. (2016). Designing-in crime by designing-out the social? Situational crime prevention and the intensification of harmful subjectivities. British Journal of Criminology, 56, 497–514.

    Article  Google Scholar 

  56. Rengert, G., & Wasilchick, J. (1985). Suburban burglary: A time and a place for everything. Springfield: CC Thomas.

    Google Scholar 

  57. Rutten, R., Westlund, H., & Boekema, F. (2010). The spatial dimension of social capital. European Planning Studies, 18(6), 863–871.

    Article  Google Scholar 

  58. Safi, H., Assemi, B., Mesbah, M., Fereira, L., & Hickman, M. (2015). Design and implementation of a smartphone-based system for personal travel survey: Case study from New Zealand. Transportation Research Record: Journal of the Transportation Research Board, 2526, 99–107.

    Article  Google Scholar 

  59. Sampson, R. J. (1988). Local friendship ties and community Attachment in mass society: A multilevel systemic model. American Sociological Review, 53, 766–779.

    Article  Google Scholar 

  60. Sennett, R. (1994). Flesh and stone. The body and the City in western civilization. New York: W.W. Norton & Company.

    Google Scholar 

  61. Shaw, C., & McKay, H. (1942). Juvenile Delinquency and urban areas. Chicago: University of Chicago Press.

    Google Scholar 

  62. Shields, R. (1991). Places on the margin: Alternative geographies of Modernity. London: Routledge.

    Google Scholar 

  63. Wan, N., Qu, W., Whittington, J., Witbrodt, B. C., Henderson, M. P., Goulding, E. H., Schenk, A. K., Bonasera, S. J., & Lin, G. (2013). Assessing smart phones for generating life-space indicators. Environment and Planning. B, Planning & Design, 40, 350–361.

    Article  Google Scholar 

  64. Wiehe, S. E., Carroll, A. E., Liu, G. C., Haberkorn, K. L., Hoch, S. C., Wilson, J. S., & Fortenberry, J. D. (2008). Using GPS-enabled cell phones to track the travel patterns of adolescents. International Journal of Health Geographics, 7(1), 22.

    Article  Google Scholar 

  65. Wolf, J., Guensler, R., & Bachman, W. (2001). Elimination of the travel diary: Experiment to derive trip purpose from global positioning system travel data. Transportation Research Record: Journal of the Transportation Research Board, 1768, 125–134.

    Article  Google Scholar 

  66. Wood, L., Shannon, T., Bulsara, M., Pikora, T., McCormack, G., & Giles-Corti, B. (2008). The anatomy of the safe and social suburb: An exploratory study of the built environment, social capital and residents’ perceptions of safety. Health & Place, 14(1), 15–31.

    Article  Google Scholar 

  67. Zandbergen, P. A. (2009). Accuracy of iPhone locations: A comparison of assisted GPS, WiFi and cellular positioning. Transactions in GIS, 13(s1), 5–25.

    Article  Google Scholar 

  68. Zukin, S. (1991). Landscapes of power: From Detroit to Disney world. Berkeley: University of California Press.

    Google Scholar 

Download references

Acknowledgments

This paper was found on research funded by the Australian Research Council, under discovery Project #DP150101293.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan Corcoran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corcoran, J., Zahnow, R. & Assemi, B. Wander: A Smartphone App for Sensing Sociability. Appl. Spatial Analysis 11, 537–556 (2018). https://doi.org/10.1007/s12061-017-9228-4

Download citation

Keywords

  • Smartphone app
  • Spatial mobility
  • Activity space
  • Mingling
  • Lingering