Skip to main content

Advertisement

Log in

Induction and maintenance immunosuppression in lung transplantation

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Immunosuppression for lung transplant recipients is a critical part of post-transplant care, to prevent acute and chronic rejection. Treatment protocols consist of induction and maintenance immunotherapy. Induction agents provide an immediate state of immunosuppression following transplantation and over time, and their use has become more commonplace. Several agents are available for clinical use, including anti-thymocyte globulin, alemtuzumab, and basiliximab, the latter being most commonly employed. Each induction agent has unique side effects and caveats to their use, of which we must be aware. Maintenance immunosuppression is initiated following transplant but requires multiple doses prior to reaching therapeutic levels. A calcineurin inhibitor, an anti-metabolite, and a corticosteroid are traditionally used, most commonly tacrolimus, mycophenolate mofetil, and prednisone. Dosing regimens and goal trough levels vary and are tailored to a patient’s clinical status and duration post-transplant. Future clinical studies may be able to assist in determining the optimal induction and maintenance immunosuppression regimens. In the interim, we use cohort and registry data to guide our therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Chambers DC, Cherikh WS, Harhay MO, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult lung and heart-lung transplantation Report-2019; Focus theme: Donor and recipient size match. J Heart Lung Transplant. 2019;38:1042–55. https://doi.org/10.1016/j.healun.2019.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Valapour M, Lehr CJ, Skeans MA, et al. OPTN/SRTR 2018 annual data report: lung. Am J Transplant. 2020. https://doi.org/10.1111/ajt.15677.

  3. Bennett D, Fossi A, Marchetti L, et al. Postoperative acute kidney injury in lung transplant recipients. Interact Cardiovasc Thorac Surg. 2019;28:929–35. https://doi.org/10.1093/icvts/ivy355.

    Article  PubMed  Google Scholar 

  4. Hayes D Jr, Black SM, Tobias JD, et al. Influence of human leukocyte antigen mismatching on bronchiolitis obliterans syndrome in lung transplantation. J Heart Lung Transplant. 2016;35:186–94. https://doi.org/10.1016/j.healun.2015.08.022.

    Article  PubMed  Google Scholar 

  5. Brock MV, Borja MC, Ferber L, et al. Induction therapy in lung transplantation: a prospective, controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant. 2001;20:1282–90. https://doi.org/10.1016/s1053-2498(01)00356-4.

    Article  CAS  PubMed  Google Scholar 

  6. Hadjiliadis D, Howell DN, Davis RD, et al. Anastomotic infections in lung transplant recipients. Ann Transplant. 2000;5:13–9.

    CAS  PubMed  Google Scholar 

  7. Zaffiri L, Long A, Neely ML, Cherikh WS, Chambers DC, Snyder LD. Incidence and outcome of post-transplant lymphoproliferative disorders in lung transplant patients: Analysis of ISHLT Registry. J Heart LungTransplant. 2020;39:1089–99. https://doi.org/10.1016/j.healun.2020.06.010.

    Article  Google Scholar 

  8. Sweet SC. Induction therapy in lung transplantation. Transpl Int. 2013;26:696–703. https://doi.org/10.1111/tri.12115.

  9. Jaksch P, Ankersmit J, Scheed A, et al. Alemtuzumab in lung transplantation: an open-label, randomized, prospective single center study. Am J Transplant. 2014;14:1839–45. https://doi.org/10.1111/ajt.12824.

    Article  CAS  PubMed  Google Scholar 

  10. Trindade AJ, Thaniyavarn T, Townsend K, et al. Alemtuzumab as a therapy for Chronic lung allograft dysfunction in lung transplant recipients with short telomeres. Front Immunol. 2020;11:1063. https://doi.org/10.3389/fimmu.2020.01063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campath® (Alemtuzumab) [package insert].Richmond, CA: Berlex Laboratories; 2001.

  12. Korom S, Boehler A, Weder W. Immunosuppressive therapy in lung transplantation: state of the art. Eur J Cardiothorac Surg. 2009;35:1045–55. https://doi.org/10.1016/j.ejcts.2009.02.035.

    Article  PubMed  Google Scholar 

  13. van Loenhout KCJ, Groves SC, Galazka M, et al. Early outcomes using alemtuzumab induction in lung transplantation. Interact Cardiovasc Thorac Surg. 2010;10:190–4. https://doi.org/10.1510/icvts.2009.213892.

    Article  PubMed  Google Scholar 

  14. Shyu S, Dew MA, Pilewski JM, et al. Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant. 2011;30:743–54. https://doi.org/10.1016/j.healun.2011.01.714.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Whited LK, Latran MJ, Hashmi ZA, et al. Evaluation of Alemtuzumab versus Basiliximab induction: a retrospective Cohort study in lung transplant recipients. Transplantation. 2015;99:2190–5. https://doi.org/10.1097/tp.0000000000000687.

    Article  CAS  PubMed  Google Scholar 

  16. Hurst FP, Altieri M, Nee R, Agodoa LY, Abbott KC, Jindal RM. Poor outcomes in elderly kidney transplant recipients receiving alemtuzumab induction. Am J Nephrol. 2011;34:534–41. https://doi.org/10.1159/000334092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duffy JS Jr, Tumin D, Pope-Harman A, Whitson BA, Higgins RSD, Hayes D Jr. Induction therapy for lung transplantation in COPD: analysis of the UNOS registry. COPD. 2016;13:647–52. https://doi.org/10.3109/15412555.2015.1127340.

    Article  PubMed  Google Scholar 

  18. Kirkby S, Whitson BA, Wehr AM, Lehman AM, Higgins RS, Hayes D Jr. Survival benefit of induction immunosuppression in cystic fibrosis lung transplant recipients. J Cystic Fibros. 2015;14:104–10. https://doi.org/10.1016/j.jcf.2014.05.010.

  19. Whitson BA, Lehman A, Wehr A, et al. To induce or not to induce: a 21st century evaluation of lung transplant immunosuppression’s effect on survival. Clin Transplant. 2014;28:450–61. https://doi.org/10.1111/ctr.12339.

  20. Thymoglobulin ® (anti-thymocyte globulin (rabbit)) [package insert].Cambridge, MA: Genzyme Corporation; 2017.

  21. Mullen JC, Oreopoulos A, Lien DC, et al. A randomized, controlled trial of daclizumab vs anti-thymocyte globulin induction for lung transplantation. J Heart Lung Transplant. 2007;26:504–10. https://doi.org/10.1016/j.healun.2007.01.032.

    Article  PubMed  Google Scholar 

  22. Hartwig MG, Snyder LD, Appel JZ 3rd, et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant. 2008;27:547–53. https://doi.org/10.1016/j.healun.2008.01.022.

    Article  PubMed  Google Scholar 

  23. Palmer SM, Baz MA, Sanders L, et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71:1772–6. https://doi.org/10.1097/00007890-200106270-00012.

    Article  CAS  PubMed  Google Scholar 

  24. Hachem RR, Edwards LB, Yusen RD, Chakinala MM, Alexander Patterson G, Trulock EP. The impact of induction on survival after lung transplantation: an analysis of the International Society for Heart and Lung Transplantation Registry. Clin Transplant. 2008;22:603–8. https://doi.org/10.1111/j.1399-0012.2008.00831.x.

    Article  PubMed  Google Scholar 

  25. Simulect ® (Basiliximab)) [package insert]. Hanover, New Jersey: Novartis Pharaceutical Corporation; 2003.

  26. Enderby C, Keller CA. An overview of immunosuppressionin solid organ transplantation. Am J Manag Care. 2015;21:s12-23.

    PubMed  Google Scholar 

  27. Cohan SL, Lucassen EB, Romba MC, Linch SN. Daclizumab: mechanisms of action, therapeutic efficacy, adverse events and its uncovering the potential role of innate immune system recruitment as a treatment strategy for relapsing multiple sclerosis. Biomedicines. 2019;7:18. https://doi.org/10.3390/biomedicines7010018.

    Article  CAS  PubMed Central  Google Scholar 

  28. Ailawadi G, Smith PW, Oka T, et al. Effects of induction immunosuppression regimen on acute rejection, bronchiolitis obliterans, and survival after lung transplantation. J Thorac Cardiovasc Surg. 2008;135:594–602. https://doi.org/10.1016/j.jtcvs.2007.10.044.

    Article  PubMed  Google Scholar 

  29. Clinckart F, Bulpa P, Jamart J, Eucher P, Delaunois L, Evrard P. Basiliximab as an alternative to antithymocyte globulin for early immunosuppression in lung transplantation. Transplant Proc. 2009;41:607–9. https://doi.org/10.1016/j.transproceed.2008.12.028.

    Article  CAS  PubMed  Google Scholar 

  30. Slebos D-J, Kauffman HF, Koëter GH, Verschuuren EA, Bij W, Postma DS. Airway cellular response to two different immunosuppressive regimens in lung transplant recipients. Clin Transplant. 2005;19:243–9. https://doi.org/10.1111/j.1399-0012.2005.00330.x.

  31. Hachem RR, Chakinala MM, Yusen RD, et al. A comparison of basiliximab and anti-thymocyte globulin as induction agents after lung transplantation. J Heart Lung Transplant. 2005;24:1320–6. https://doi.org/10.1016/j.healun.2004.09.002.

    Article  PubMed  Google Scholar 

  32. Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56:23–46. https://doi.org/10.1016/j.critrevonc.2005.03.012.

  33. Neoral ® [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation, 2009.

  34. Prograf ® [package insert]Deerfield, IL: Astellas Pharma US Inc, 2012.

  35. Bishop M. Clinical Chemistry: Principles, Procedures, Correlations: Lippincott Williams &Wilkins; 2004.

  36. Zuckermann A, Reichenspurner H, Birsan T, et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J Thorac Cardiovasc Surg. 2003;125:891–900. https://doi.org/10.1067/mtc.2003.71.

    Article  CAS  PubMed  Google Scholar 

  37. Treede H, Klepetko W, Reichenspurner H, et al. Tacrolimus versus cyclosporine after lung transplantation: a prospective, open, randomized two-center trial comparing two different immunosuppressive protocols. J Heart Lung Transplant. 2001;20:511–7. https://doi.org/10.1016/s1053-2498(01)00244-3.

    Article  CAS  PubMed  Google Scholar 

  38. Treede H, Glanville AR, Klepetko W, et al. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trialin lung transplantation. J Heart Lung Transplant. 2012;31:797–804. https://doi.org/10.1016/j.healun.2012.03.008.

    Article  PubMed  Google Scholar 

  39. Hachem RR, Yusen RD, Chakinala MM, et al. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation. J Heart Lung Transplant. 2007;26:1012–8. https://doi.org/10.1016/j.healun.2007.07.027.

  40. Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 1989;46:149–54. https://doi.org/10.1038/clpt.1989.119.

  41. Cellcept ® [package insert]. Nutley, NJ: Roche Laboratories Inc, 2009.

  42. Zuckermann A, Klepetko W, Birsan T, et al. Comparison between mycophenolate mofetil- and azathioprine-based immunosuppressions in clinical lung transplantation. J Heart Lung Transplant. 1999;18:432–40. https://doi.org/10.1016/s1053-2498(99)00004-2.

    Article  CAS  PubMed  Google Scholar 

  43. McNeil K, Glanville AR, Wahlers T, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81:998–1003. https://doi.org/10.1097/01.tp.0000202755.33883.61.

    Article  CAS  PubMed  Google Scholar 

  44. Borro JM, Solé A, De la Torre M, Pastor A, Tarazona V. Steroid withdrawal in lung transplant recipients. Transplant Proc. 2005;37:3991–3. https://doi.org/10.1016/j.transproceed.2005.09.190.

  45. Karia PS, Azzi JR, Heher EC, Hills VM, Schmults CD. Association of sirolimus use with risk for skin cancer in a mixed-organ cohort of solid-organ transplant recipients with a history of cancer. JAMA Dermatol. 2016;152:533–40. https://doi.org/10.1001/jamadermatol.2015.5548.

  46. Parada MT, Alba A, Sepúlveda C, Melo J. Long-term use of everolimus in lung transplant patients. Transplant Proc. 2011;43:2313–5. https://doi.org/10.1016/j.transproceed.2011.06.010.

  47. Bhorade S, Ahya VN, Baz MA, et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183:379–87. https://doi.org/10.1164/rccm.201005-0775OC.

    Article  CAS  PubMed  Google Scholar 

  48. Snell GI, Valentine VG, Vitulo P, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant. 2006;6:169–77. https://doi.org/10.1111/j.1600-6143.2005.01134.x.

    Article  CAS  PubMed  Google Scholar 

  49. Ahya VN, McShane PJ, Baz MA, et al. Increased risk of venous thromboembolism with a sirolimus-based immunosuppression regimen in lung transplantation. J Heart Lung Transplant. 2011;30:175–81. https://doi.org/10.1016/j.healun.2010.08.010.

    Article  PubMed  Google Scholar 

  50. Chhajed PN, Dickenmann M, Bubendorf L, Mayr M, Steiger J, Tamm M. Patterns of pulmonary complications associated with sirolimus. Respiration. 2006;73:367–74. https://doi.org/10.1159/000087945.

  51. Gullestad L, Iversen M, Mortensen S-A, et al. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. Transplantation. 2010;89:864–72. https://doi.org/10.1097/TP.0b013e3181cbac2d.

    Article  CAS  PubMed  Google Scholar 

  52. King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75:1437–43. https://doi.org/10.1097/01.TP.0000064083.02120.2C.

  53. Nulojix (belatacept) [package insert].Princeton, NJ: Bristol-Myers Squibb Company; 2014.

  54. Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353:770–81. https://doi.org/10.1056/NEJMoa050085.

    Article  CAS  PubMed  Google Scholar 

  55. Timofte I, Terrin M, Barr E, et al. Belatacept for renal rescue in lung transplant patients. Transpl Int. 2016;29:453–63. https://doi.org/10.1111/tri.12731.

    Article  CAS  PubMed  Google Scholar 

  56. Iasella CJ, Winstead RJ, Moore CA, et al. Maintenance belatacept-based immunosuppression in lung transplantation recipients who failed calcineurin inhibitors. Transplantation. 2018;102:171–7. https://doi.org/10.1097/TP.0000000000001873.

    Article  CAS  PubMed  Google Scholar 

  57. Weaver TA, Kirk AD. Alemtuzumab. Transplantation. 2007;84:1545–7. https://doi.org/10.1097/01.tp.0000296680.75175.67.

    Article  CAS  PubMed  Google Scholar 

  58. Snell GI, Westall GP, Levvey BJ, et al. A randomized, double-blind, placebo-controlled, multicenter study of rabbit ATG in the prophylaxis of acute rejection in lung transplantation. Am J Transplant. 2014;14:1191–8. https://doi.org/10.1111/ajt.12663.

    Article  CAS  PubMed  Google Scholar 

  59. Scheffert JL, Raza K. Immunosuppression in lung transplantation J Thorac Dis. 2014;6:1039–53. https://doi.org/10.3978/j.issn.2072-1439.2014.04.23.

    Article  PubMed  Google Scholar 

  60. Glanville AR, Aboyoun C, Klepetko W, et al. Three-year results of an investigator-driven multicenter, international, randomized open-label de novo trial to prevent BOS after lung transplantation. J Heart Lung Transplant. 2015;34:16–25. https://doi.org/10.1016/j.healun.2014.06.001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kristina Bailey for her editing assistance.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

B. Small began the idea for the article. B. Small; J. Au; H. Brink; and I. Shah completed the literature search and drafted the work. H. Strah created the figure and critically revised the work.

Corresponding author

Correspondence to Bronwyn Small.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Small, B., Au, J., Brink, H. et al. Induction and maintenance immunosuppression in lung transplantation. Indian J Thorac Cardiovasc Surg 38 (Suppl 2), 300–317 (2022). https://doi.org/10.1007/s12055-021-01225-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-021-01225-x

Keywords

Navigation