Skip to main content
Log in

Pathophysiology of respiratory failure and physiology of gas exchange during ECMO

  • REVIEW ARTICLE
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Lungs play a key role in sustaining cellular respiration by regulating the levels of oxygen and carbon dioxide in the blood. This is achieved by exchanging these gases between blood and ambient air across the alveolar capillary membrane by the process of diffusion. In the microstructure of the lung, gas exchange is compartmentalized and happens in millions of microscopic alveolar units. In situations of lung injury, this structural complexity is disrupted resulting in impaired gas exchange. Depending on the severity and the type of lung injury, different aspects of pulmonary physiology are affected. If the respiratory failure is refractory to ventilator support, extracorporeal membrane oxygenation (ECMO) can be utilized to support the gas exchange needs of the body. In ECMO, thin hollow fiber membranes made up of polymethylpentene act as blood-gas interface for diffusion. Decades of innovative engineering with membranes and their alignment with blood and gas flows has enabled modern oxygenators to achieve clinically and physiologically significant amount of gas exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Krogh A, Krogh M. On the tensions of gases in the arterial blood. Skand Arch Physiol. 1910;23:179–92.

    Article  Google Scholar 

  2. Krogh M. The diffusion of gases through the lungs of man. J Physiol. 1915;49:271–300.

    Article  CAS  Google Scholar 

  3. Einstein A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der Physik. 1905;17: 549–560.

  4. Philibert J. One and a half century of diffusion: Fick, Einstein, before and beyond. Diffus Fundam. 2006;4:6.1–6.19.

  5. Fick AV. On liquid diffusion. London, Edinburgh, Dublin Philos Mag J Sci. 1855. https://doi.org/10.1080/14786445508641925

  6. Ochs M, Nyengaard JR, Jung A, et al. The number of alveoli in the human lung. Am J Respir Crit Care Med. 2004;169:120–4.

    Article  Google Scholar 

  7. Knust J, Ochs M, Gundersen HJ, Nyengaard JR. Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec. 2009;292:113–22.

    Article  Google Scholar 

  8. Suki B, Stamenović D, Hubmayr R. Lung parenchymal mechanics. Compr Physiol. 2011;1:1317–51.

    PubMed  PubMed Central  Google Scholar 

  9. Levitsky MG. Chapter 3: Alveolar ventilation. Pulmonary physiology, 9e. McGraw-Hill. 2017. https://accessmedicine.mhmedical.com/content.aspx?bookid=2288&sectionid=178856748.

  10. Powell FL, Wagner PD, West JB. Ventilation, blood flow, and gas exchange. In: Murray and Nadel’s textbook of respiratory medicine; 2016. https://doi.org/10.1016/b978-1-4557-3383-5.00004-x.

    Chapter  Google Scholar 

  11. Willführ A, Brandenberger C, Piatkowski T, et al. Estimation of the number of alveolar capillaries by the Euler number (Euler-poincaré characteristic). Am J Physiol Lung Cell Mol Physiol. 2015;309:L1286–93.

    Article  Google Scholar 

  12. Wagner PD, Laravuso RB, Uhl RR, West JB. Continuous distributions of ventilation- perfusion ratios in normal subjects breathing air and 100% O2. J Clin Invest. 1974;54:54–68.

    Article  CAS  Google Scholar 

  13. West JB. Ventilation/perfusion inequality and overall gas exchange in computer models of the lung. Respir Physiol. 1969;7:88–110.

    Article  CAS  Google Scholar 

  14. Riley RL, Cournand A. “Ideal” alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol. 1949;1:825–47.

    Article  CAS  Google Scholar 

  15. Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J. 2014;44:1023–41.

    Article  Google Scholar 

  16. Baumann R, Bartels H, Bauer C. Blood oxygen transport. In: Comprehensive physiology; 2011. https://doi.org/10.1002/cphy.cp030409.

    Chapter  Google Scholar 

  17. Roughton FJ, Forster RE. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957;11:290–302.

    Article  CAS  Google Scholar 

  18. Chen H, Ikeda-Saito M, Shaik S. Nature of the Fe-O2 bonding in oxy-myoglobin: effect of the protein. J Am Chem Soc. 2008;130:14778–14,790.

    Article  CAS  Google Scholar 

  19. Popel AS. Theory of oxygen transport to tissue. Crit Rev Biomed Eng. 1989;17:257–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Klocke RA. Carbon dioxide. In: Encyclopedia of respiratory medicine, four-volume set. 2006. https://doi.org/10.1016/B0-12-370879-6/00056-9

  21. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev. 2000;80:681–715.

    Article  CAS  Google Scholar 

  22. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122:2731–40.

    Article  CAS  Google Scholar 

  23. Bachofen M, Weibel ER. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis. 1977;116:589–615.

    Article  CAS  Google Scholar 

  24. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–49.

    Article  CAS  Google Scholar 

  25. Riley RL, Cournand A. Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of lungs; theory. J Appl Physiol. 1951;4:77–101.

    Article  CAS  Google Scholar 

  26. Vesconi S, Rossi GP, Pesenti A, Fumagalli R, Gattinoni L. Pulmonary microthrombosis in severe adult respiratory distress syndrome. Crit Care Med. 1988;16:111–3.

    Article  CAS  Google Scholar 

  27. Abrams D, Brodie D. ECMO for adult respiratory failure: 2017 Update. Chest. 2017;152:639–49.

    Article  Google Scholar 

  28. Gollub S, Hirose T, Everett H. A comparison of blood trauma by various extracorporeal oxygenators. Ann Thorac Surg. 1967;3:347–52.

    Article  CAS  Google Scholar 

  29. Iwahashi H, Yuri K, Nosé Y. Development of the oxygenator: past, present, and future. J Artif Organs. 2004;7:111–20.

    Article  Google Scholar 

  30. Yeager T, Roy S. Evolution of gas permeable membranes for extracorporeal membrane oxygenation. Artif Organs. 2017. https://doi.org/10.1111/aor.12835.

  31. Federspiel W, Henchir K. Lung, artificial: basic principles and current applications. In: Encyclopedia of biomaterials and biomedical engineering, Second Edition - Four Volume Set; 2008. https://doi.org/10.1201/b18990-161.

    Chapter  Google Scholar 

  32. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167:211–77.

  33. Spinelli E, Bartlett RH. Relationship between hemoglobin concentration and extracorporeal blood flow as determinants of oxygen delivery during venovenous extracorporeal membrane oxygenation: a mathematical model. ASAIO J. 2014;60:688–93.

    Article  CAS  Google Scholar 

  34. Bartlett RH. Physiology of gas exchange during ECMO for respiratory failure. J Intensive Care Med. 2017;32:243–8.

    Article  Google Scholar 

  35. Joyce CJ, Shekar K, Cook DA. A mathematical model of CO2, O2 and N2 exchange during venovenous extracorporeal membrane oxygenation. Intensive Care Med Exp. 2018;6:25. https://doi.org/10.1186/s40635-018-0183-4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Enghoff H, Holmdahl MH, Risholm L. Diffusion respiration in man. Nature. 1951;168:830. https://doi.org/10.1038/168830a0.

    Article  CAS  PubMed  Google Scholar 

  37. Nielsen ND, Andersen G, Kjærgaard B, Stærkind ME, Larsson A. Alveolar accumulation/concentration of nitrogen during apneic oxygenation with arteriovenous carbon dioxide removal. ASAIO J. 2010. https://doi.org/10.1097/MAT.0b013e3181c4e935.

  38. Batchinsky AI, Jordan BS, Regn D, et al. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med. 2011;39:1382–7.

    Article  Google Scholar 

  39. Brodie D. The evolution of extracorporeal membrane oxygenation for adult respiratory failure. Ann Am Thorac Soc. 2018;15:S57–60.

    Article  Google Scholar 

  40. Schmidt M, Tachon G, Devilliers C, et al. Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med. 2013;39:838–46.

    Article  CAS  Google Scholar 

Download references

Funding

No funding received

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Manickavel.

Ethics declarations

Conflict of interest

I declare that there is no conflict of interest.

Informed consent

Not applicable as no patients were involved.

Statement of human and animal rights

Not applicable as no experiments were performed.

Ethics committee

Not applicable as this is a review of basic science principle.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manickavel, S. Pathophysiology of respiratory failure and physiology of gas exchange during ECMO. Indian J Thorac Cardiovasc Surg 37 (Suppl 2), 203–209 (2021). https://doi.org/10.1007/s12055-020-01042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-020-01042-8

Keywords

Navigation