Skip to main content

Advertisement

Log in

Avoiding use of total circulatory arrest in the practice of congenital heart surgery

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Deep hypothermic circulatory arrest (DHCA) technique has been an important armamentarium in the correction of congenital heart diseases. There have been many controversies and concerns associated with DHCA, particularly neurological damage. Selective ante grade cerebral perfusion (SACP) was introduced as an adjunct to DHCA with the objective of limiting the neurologic injury during aortic arch repairs. Over the past two decades, various aspects of cardiopulmonary bypass and DHCA have been studied and modified such as optimisation of flows, anti-inflammatory interventions, haematocrit, and temperature to improve neurologic outcomes. With the changes in practice of DHCA, outcomes have significantly improved but SACP intuitively appears attractive to offer better neuroprotection. The strategy of conduct of SACP is evolving and needs to be standardised for comparing outcomes. In this review we have discussed the various physiological and technical factors involved in conduct of SACP in paediatric cardiac surgery and outcomes with SACP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med. 1993;329:1057–64.

    Article  CAS  PubMed  Google Scholar 

  2. Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med. 1995;332:549–55.

    Article  CAS  PubMed  Google Scholar 

  3. Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel GJ, editor. Basic 22. neurochemistry molecular, cellular, and medical aspects.6th ed. Philadelphia: Lippincott Williams & Wilkins,1999:637-670

  4. Lassen NA. Autoregulation of cerebral blood flow. Circ Res. 1964;15:201–4.

    CAS  Google Scholar 

  5. Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J Cereb Blood Flow Metab. 2003;23:513–30.

    Article  CAS  PubMed  Google Scholar 

  6. Murdoch J, Hall R. Brain protection: physiological and pharmacological considerations. Part I: The physiology of brain injury. Can J Anaesth. 1990;37:663–71.

    Article  CAS  PubMed  Google Scholar 

  7. Murphy MP. Nitric oxide and cell death. Biochim Biophys Acta. 1999;1411:401–14.

    Article  CAS  PubMed  Google Scholar 

  8. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–82.

    Article  CAS  PubMed  Google Scholar 

  9. Redmond JM, Gillinov AM, Zehr KJ, et al. Glutamate excitotoxicity: a mechanism of neurologic injury associated with hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1994;107:776–86.

    Article  CAS  PubMed  Google Scholar 

  10. Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell death in the developing brain after hypoxia - ischaemia. Front Cell Neurosci. 2017;11:248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tseng EE, Brock MV, Lange MS, et al. Nitric oxide mediates neurologic injury after hypothermic circulatory arrest. Ann Thorac Surg. 1999;67:65–71.

    Article  CAS  PubMed  Google Scholar 

  12. Ditsworth D, Priestley MA, Loepke AW, et al. Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets. Anesthesiology. 2003;98:1119–27.

    Article  PubMed  Google Scholar 

  13. Kirklin JW, Barratt-Boyes BG, editors. Cardiac surgery: morphology, diagnostic criteria, natural history, techniques, results, and indications. 2nd ed. New York: Churchill Livingstone; 1993.

    Google Scholar 

  14. González-Ibarra FP, Varon J, López-Meza EG. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front Neurol. 2011;2:4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100:526–32.

    Article  CAS  PubMed  Google Scholar 

  16. Bellinger DC, Wypij D, Du Plessis AJ, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003;126:1385–96.

    Article  PubMed  Google Scholar 

  17. Bellinger DC, Wypij D, Rivkin MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011;124:1361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Langley SM, Chai PJ, Jaggers JJ, Ungerleider RM. Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2000;17:279–86.

    Article  CAS  PubMed  Google Scholar 

  19. Lodge AJ, Chai PJ, Daggett CW, et al. Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg. 1999;117:515–22.

    Article  CAS  PubMed  Google Scholar 

  20. Greeley WJ, Kern FH, Meliones JN, et al. Effect of deep hypothermia and circulatory arrest on cerebral blood flow and metabolism. Ann Thorac Surg. 1993;56:1464–6.

    Article  CAS  PubMed  Google Scholar 

  21. Aoki M, Nomura F, Stromski ME, et al. Effects of pH on brain energetics after hypothermic circulatory arrest. Ann Thorac Surg. 1993;55:1093–103.

    Article  CAS  PubMed  Google Scholar 

  22. Gillinov AM, Redmond JM, Zehr KJ, et al. Superior cerebral protection with profound hypothermia during circulatory arrest. Ann Thorac Surg. 1993;55:1432–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kirshbom PM, Skaryak LR, DiBernardo LR, et al. pH-Stat cooling improves cerebral metabolic recovery after circulatory arrest in a piglet model of aorto-pulmonary collaterals. J Thorac Cardiovasc Surg. 1996;111:147–55.

    Article  CAS  PubMed  Google Scholar 

  24. Pearl JM, Thomaas DW, Grist G, et al. Hyperoxia for management of acid-base status during deep hypothermia with circulatory arrest. Ann Thorac Surg. 2000;70:751–5.

    Article  CAS  PubMed  Google Scholar 

  25. Skaryak LA, Kirshbom PM, DiBernardo LR, et al. Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest. J Thorac Cardiovasc Surg. 1995;109:744–51.

    Article  CAS  PubMed  Google Scholar 

  26. Gaynor JW, Gerdes M, Zackai EH, et al. Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg. 2003;126:1736–45.

    Article  CAS  PubMed  Google Scholar 

  27. Menache CC, du Plessis AJ, Wessel DL, et al. Current incidence of acute neurological complications after open-heart operations in children. Ann Thorac Surg. 2002;73:1752–8.

    Article  PubMed  Google Scholar 

  28. Miyamoto TA, Miyamoto KJ. pH-stat strategies protect 60-minute central nervous system ischemia at 29.5 degrees C. Ann Thorac Surg. 2000;70:1001–2.

    Article  CAS  PubMed  Google Scholar 

  29. Sakamoto T, Hatsuoka S, Stock UA, et al. Prediction of safe duration of hypothermic circulatory arrest by near-infrared spectroscopy. J Thorac Cardiovasc Surg. 2001;122:339–50.

    Article  CAS  PubMed  Google Scholar 

  30. Langley SM, Chai PJ, Miller SE, et al. Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg. 1999;68:4–12.

    Article  CAS  PubMed  Google Scholar 

  31. Greeley WJ, Kern FH, Ungerleider RM, et al. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg. 1991;101:783–94.

    Article  CAS  PubMed  Google Scholar 

  32. Sakamoto K, Yokota K, Mahito S, et al. A successful Norwood operation in a neonate with hypoplastic left heart syndrome. In: 32nd Annual meeting of the japanese association of thoracic surgeons. Osaka, Japan; 1989.

  33. Asou T, Kado H, Imoto Y, et al. Selective cerebral perfusion technique during aortic arch repair in neonates. Ann Thorac Surg. 1996;61:1546–8.

    Article  CAS  PubMed  Google Scholar 

  34. Pigula FA, Nemoto EM, Griffith BP, Siewers RD. Regional low-flow perfusion provides cerebral circulatory support during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg. 2000;119:331–9.

    Article  CAS  PubMed  Google Scholar 

  35. Tchervenkov CI, Chu VF, Shum-Tim D, et al. Norwood operation without circulatory arrest: a new surgical technique. Ann Thorac Surg. 2000;70:1730–3.

    Article  CAS  PubMed  Google Scholar 

  36. Imoto Y, Kado H, Shiokawa Y, Fukae K, Yasui H. Norwood procedure without circulatory arrest. Ann Thorac Surg. 1999;68:559–61.

    Article  CAS  PubMed  Google Scholar 

  37. Nasirov T, Mainwaring RD, Reddy VM, et al. Innominate artery cannulation and antegrade cerebral perfusion for aortic arch reconstruction in infants and children. World J Pediatr Congenit Heart Surg. 2013;4:356–61.

    Article  PubMed  Google Scholar 

  38. Dharmapuram AK, Ramadoss N, Goutami V, et al. Single-stage repair of aortic arch and associated cardiac defects with antegrade cerebral perfusion using direct innominate artery cannulation in neonates and infants. Indian J Thorac Cardiovasc Surg. 2015;31:127–32.

    Article  Google Scholar 

  39. Mitchell DG, Merton DA, Mirsky PJ, Needleman L. Circle of Willis in newborns: color Doppler imaging of 53 healthy full-term infants. Radiology. 1989;172:201–5.

    Article  CAS  PubMed  Google Scholar 

  40. van Kooij BJ, Hendrikse J, Benders MJ, de Vries LS, Groenendaal F. Anatomy of the circle of Willis and blood flow in the brain-feeding vasculature in prematurely born infants. Neonatology. 2010;97:235–41.

    Article  PubMed  Google Scholar 

  41. Tanaka J, Shiki K, Asou T, Yasui H, Tokunaga K. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs. J Thorac Cardiovasc Surg. 1988;95:124–32.

    Article  CAS  PubMed  Google Scholar 

  42. Ito T. Effect of deep hypothermia on cerebral hemodynamics during selective cerebral perfusion with systemic circulatory arrest. Jpn J Thorac Cardiovasc Surg. 2002;50:109–15.

    Article  PubMed  Google Scholar 

  43. Kern FH, Ungerleider RM, Reves JG, et al. Effect of altering pump flow rate on cerebral blood flow and metabolism in infants and children. Ann Thorac Surg. 1993;56:1366–72.

    Article  CAS  PubMed  Google Scholar 

  44. DeCampli WM, Schears G, Myung R, et al. Tissue oxygen tension during regional low-flow perfusion in neonates. J Thorac Cardiovasc Surg. 2003;125:472–80.

    Article  PubMed  Google Scholar 

  45. Sasaki T, Tsuda S, Riemer RK, Ramamoorthy C, Reddy VM, Hanley FL. Optimal flow rate for antegrade cerebral perfusion. J Thorac Cardiovasc Surg. 2010;139:530–5.

    Article  PubMed  Google Scholar 

  46. Tweddell JS, Hoffman GM, Mussatto KA, et al. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: lessons learned from 115 consecutive patients. Circulation. 2002;106:I82–9.

    PubMed  Google Scholar 

  47. Goldberg CS, Bove EL, Devaney EJ, et al. A randomized clinical trial of regional cerebral perfusion versus deep hypothermic circulatory arrest: outcomes for infants with functional single ventricle. J Thorac Cardiovasc Surg. 2007;133:880–7.

    Article  PubMed  Google Scholar 

  48. Tchervenkov CI, Korkola SJ, Shum-Tim D, et al. Neonatal aortic arch reconstruction avoiding circulatory arrest and direct arch vessel cannulation. Ann Thorac Surg. 2001;72:1615–20.

    Article  CAS  PubMed  Google Scholar 

  49. Hofer A, Haizinger B, Geiselseder G, Mair R, Rehak P, Gombotz H. Monitoring of selective antegrade cerebral perfusion using near infrared spectroscopy in neonatal aortic arch surgery. Eur J Anaesthesiol. 2005;22:293–8.

    Article  CAS  PubMed  Google Scholar 

  50. Guo Z, Hu RJ, Zhu DM, Zhu ZQ, Zhang HB, Wang W. Usefulness of deep hypothermic circulatory arrest and regional cerebral perfusion in children. Ther Hypothermia Temp Manag. 2013;3:126–31.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Visconti KJ, Rimmer D, Gauvreau K, et al. Regional low-flow perfusion versus circulatory arrest in neonates: one-year neurodevelopmental outcome. Ann Thorac Surg. 2006;82:2207–11.

    Article  PubMed  Google Scholar 

  52. Fraser CD, Andropoulos DB. Principles of antegrade cerebral perfusion during arch reconstruction in newborns/infants. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2008:61–8.

  53. Rajasinghe HA, Reddy VM, van Son JA, et al. Coarctation repair using end-to-side anastomosis of descending aorta to proximal aortic arch. Ann Thorac Surg. 1996;61:840–4.

    Article  CAS  PubMed  Google Scholar 

  54. Gupta B, Dodge-Khatami A, Tucker J. Antegrade cerebral perfusion at 25 °C for arch reconstruction in newborns and children preserves perioperative cerebral oxygenation and serum creatinine. Transl Pediatr. 2016;5:114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Miyaji K, Miyamoto T, Kohira S, et al. Regional high-flow cerebral perfusion improves both cerebral and somatic tissue oxygenation in aortic arch repair. Ann Thorac Surg. 2010;90:593–9.

    Article  PubMed  Google Scholar 

  56. Bhalala US, Thangavelu M, Owens R, et al. New frontiers in pediatric critical care: mild hypothermia and selective antegrade cerebral perfusion during cardiopulmonary bypass surgery in children. Pediatrics. 2018, 142 (1 MeetingAbstract) 28.

  57. Abdul-Khaliq H, Troitzsch D, Schubert S, et al. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest. Thorac Cardiovasc Surg. 2002;50:77–81.

    Article  CAS  PubMed  Google Scholar 

  58. Abdul-Khaliq H, Schubert S, Troitzsch D, et al. Dynamic changes in cerebral oxygenation related to deep hypothermia and circulatory arrest evaluated by near-infrared spectroscopy. Acta Anaesthesiol Scand. 2001;45:696–701.

    Article  CAS  PubMed  Google Scholar 

  59. Andropoulos DB, Stayer SA, Diaz LK, Ramamoorthy C. Neurological monitoring for congenital heart surgery. Anesth Analg. 2004;99:1365–75.

    Article  PubMed  Google Scholar 

  60. Toet MC, Flinterman A, Laar I, et al. Cerebral oxygen saturation and electrical brain activity before, during, and up to 36 hours after arterial switch procedure in neonates without pre-existing brain damage: its relationship to neurodevelopmental outcome. Exp Brain Res. 2005;165:343–50.

    Article  PubMed  Google Scholar 

  61. Andropoulos DB, Diaz LK, Fraser CD, McKenzie ED, Stayer SA. Is bilateral monitoring of cerebral oxygen saturation necessary during neonatal aortic arch reconstruction? Anesth Analg. 2004;98:1267–72.

    Article  PubMed  Google Scholar 

  62. McQuillen PS, Barkovich AJ, Hamrick SE, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke. 2007;38:736–41.

    Article  PubMed  Google Scholar 

  63. Myung RJ, Petko M, Judkins AR, et al. Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets. J Thorac Cardiovasc Surg. 2004;127:1051–6.

    Article  PubMed  Google Scholar 

  64. Chock VY, Amir G, Davis CR, et al. Antegrade cerebral perfusion reduces apoptotic neuronal injury in a neonatal piglet model of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2006;131:659–65.

    Article  PubMed  Google Scholar 

  65. Kornilov IA, Sinelnikov YS, Soinov IA, et al. Outcomes after aortic arch reconstruction for infants: deep hypothermic circulatory arrest versus moderate hypothermia with selective antegrade cerebral perfusion. Eur J Card Thorac Surg. 2015;48:e45–50.

    Article  Google Scholar 

  66. Selder J, Algra S, Evens F, et al. Minimizing circulatory arrest by using antegrade cerebral perfusion for aortic arch reconstruction in infants causes fewer postoperative adverse events. Thorac cardiovasc Surg. 2010;58:17–22.

    Article  CAS  PubMed  Google Scholar 

  67. Algra SO, Jansen NJ, van der Tweel I, et al. Neurological injury after neonatal cardiac surgery: a randomized, controlled trial of 2 perfusion techniques. Circulation. 2014;129:224–33.

  68. Meyer DB, Jacobs JP, Hill K, Wallace AS, Bateson B, Jacobs ML. Variation in perfusion strategies for neonatal and infant aortic arch repair: contemporary practice in the STS congenital heart surgery database. World J Pediatr Congenit Heart Surg. 2016;7:638–44.

    Article  PubMed  Google Scholar 

Download references

Funding

There is no funding from any source involved in this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Dharmapuram.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interests.

Research involving human participation or animals

In this review article, the authors were not involved with any research related to human participants or animals.

Ethical approval

Not applicable as review article.

Informed consent

Since this is a review article, the manuscript contained purely material related to review of literature. There is no material in the manuscript related to our own institutional experience related to the subject. We only mentioned the reference of the previous publication from our unit. For this reason, the informed consent is not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadoss, N., Dharmapuram, A.K., Goutami, V. et al. Avoiding use of total circulatory arrest in the practice of congenital heart surgery. Indian J Thorac Cardiovasc Surg 37 (Suppl 1), 174–182 (2021). https://doi.org/10.1007/s12055-020-00955-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-020-00955-8

Keywords

Navigation