Skip to main content

Advertisement

Log in

Transmyocardial revascularization (TMR): current status and future directions

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Purpose

Cardiac surgeons are increasingly faced with a more complex patient who has developed a pattern of diffuse coronary artery disease (CAD), which is refractory to medical, percutaneous, and surgical interventions. This paper will review the clinical science surrounding transmyocardial revascularization (TMR) with an emphasis on the results from randomized controlled trials.

Methods

Randomized controlled trials which evaluated TMR used as sole therapy and when combined with coronary artery bypass grafting were reviewed. Pertinent basic science papers exploring TMR’s possible mechanism of action along with future directions, including the synergism between TMR and cell-based therapies were reviewed.

Results

Two laser-based systems have been approved by the United States Food and Drug Administration (FDA) to deliver laser therapy to targeted areas of the left ventricle (LV) that cannot be revascularized using conventional methods: the holmium:yttrium-aluminum-garnet (Ho:YAG) laser system (CryoLife, Inc., Kennesaw, GA) and the carbon dioxide (CO2) Heart Laser System (Novadaq Technologies Inc., (Mississauga, Canada). TMR can be performed either as a stand-alone procedure (sole therapy) or in conjunction with coronary artery bypass graft (CABG) surgery in patients who would be incompletely revascularized by CABG alone. Societal practice guidelines have been established and are supportive of using TMR in the difficult population of patients with diffuse CAD.

Conclusions

Patients with diffuse CAD have increased operative and long-term cardiac risks predicted by incomplete revascularization. The documented operative and long-term benefits associated with sole therapy and adjunctive TMR in randomized trials supports TMR’s increased use in this difficult patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muhkerjee D, Bhatt DL, Roe MT, Patel V, Ellis SG. Direct myocardial revascularization and angiogenesis – how many patients might be eligible? Am J Cardiol. 1999;84:598–600.

    Article  Google Scholar 

  2. Weintraub WS, Jones EL, Craver JM, Guyton RA. Frequency of repeat coronary bypass or coronary angiogplasty after coronary artery bypass surgery using saphenous venous grafts. Am J Cardiol. 1994;73:103–12.

    Article  CAS  PubMed  Google Scholar 

  3. Osswald BR, Blackstone EH, Tochtermann U, et al. Does the completeness of revascularization affect early survival after coronary artery bypass grafting in elderly patients? Eur J Cardiothorac Surg. 2001;20:120–6.

    Article  CAS  PubMed  Google Scholar 

  4. Mohr FW, Rastan AJ, Serruys PW, et al. Complex coronary anatomy in coronary artery bypass graft surgery: impact of complex coronary anatomy in modern bypass surgery? Lessons learned from the SYNTAX trial after two years. J Thorac Cardiovasc Surg. 2011;141:130–40.

    Article  PubMed  Google Scholar 

  5. Allen KB. Holmium:YAG laser system for transmyocardial revascularization. Expert Rev Med Devices. 2006;3:137–46.

    Article  PubMed  Google Scholar 

  6. Schaff H, Gersh BJ, Pluth J, et al. Survival and functional status after coronary artery bypass grafting: results 10 to 12 years after surgery in 500 patients. Circulation. 1983;68:II200–4.

  7. Lawrie GM, Morris GC, Silvers A, et al. The influence of residual disease after coronary bypass on the 5-year survival rate of 1274 men with coronary artery disease. Circulation. 1982;66:717–23.

    Article  CAS  PubMed  Google Scholar 

  8. Bell MR, Gersh BJ, Schaff HV, et al. Effect of completeness of revascularization on long-term outcome of patients with three-vessel disease undergoing coronary artery bypass surgery. A report from the Coronary Artery Surgery (CASS) Registery. Circulation. 1992;86:446–57.

    Article  CAS  PubMed  Google Scholar 

  9. Allen KB, Dowling RD, DelRossi AJ, et al. Transmyocardial laser revascularization combined with coronary artery bypass grafting: a multicenter, blinded, prospective, randomized, controlled trial. J Thorac Cardiovasc Surg. 2000;119:540–9.

  10. Lopes RD, Hafley GE, Allen KB, et al. Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery. N Engl J Med. 2009;361:235–44.

  11. Allen KB, Dowling RD, Heimansohn DA, Reitsma E, Didelot G, Shaar CJ. Transmyocardial revascularization utilizing a holmium:YAG laser. Eur J Cardiothorac Surg. 1998;14:S100–4.

    Article  PubMed  Google Scholar 

  12. Allen KB, Dowling RD, Fudge TL, et al. Comparison of transmyocardial revascularization with medical therapy in patients with refractory angina. N Engl J Med. 1999;341:1029–36.

    Article  CAS  PubMed  Google Scholar 

  13. Frazier OH, March RJ, Horvath KA. Transmyocardial revascularization with a carbon dioxide laser in patients with end-stage coronary artery disease. N Engl J Med. 1999;341:1021–8.

    Article  CAS  PubMed  Google Scholar 

  14. Burkhoff D, Schmidt S, Schulman SP, et al. Transmyocardial laser revascularisation compared with continued medical therapy for treatment of refractory angina pectoris: a prospective randomized trial. Lancet. 1999;354:885–90.

    Article  CAS  PubMed  Google Scholar 

  15. Schofield PM, Sharples LD, Caine N, et al. Transmyocardial laser revascularization in patients with refractory angina: a randomised controlled trial. Lancet. 1999;353:519–24.

    Article  CAS  PubMed  Google Scholar 

  16. Aaberge L, Nordstrand K, Dragsund M, et al. Transmyocardial revascualrization with CO2 laser in patients with refractory angina pectoris: clinical results from the Norwegian randomized trial. J Am Coll Cardiol. 2000;35:1170–7.

    Article  CAS  PubMed  Google Scholar 

  17. Allen KB, Dowling RD, Angell WW, et al. Transmyocardial revascularization: five-year follow-up of a prospective, randomized, multicenter trial. Ann Thorac Surg. 2004;77:1228–34.

    Article  PubMed  Google Scholar 

  18. Horvath KA, Aranki SF, Cohn LH, et al. Sustained angina relief 5 years after transmyocardial laser revascularization with a CO2 laser. Circulation. 2001;104:I-81–4.

    Article  CAS  Google Scholar 

  19. Cheng D, Diegeler A, Allen K, et al. Transmyocardial laser revascularization: a meta-analysis and systematic review of controlled trials. Innovations. 2006;1:295–313.

    Article  PubMed  Google Scholar 

  20. Myers J, Oesterle S, Jones J, Burkhoff D. Do transmyocardial and percutaneous laser revascularization induce silent ischemia? An assessment by exercise testing. Am Heart J. 2002;143:1052–7.

    Article  PubMed  Google Scholar 

  21. Bridges CR, Horvath KA, Nugent B, Shahian DM, Haan CK, Shemin RJ. Society of Thoracic Surgeons practice guideline: transmyocardial laser revascularization. Ann Thorac Surg. 2004;77:1484–502.

    Article  Google Scholar 

  22. Diegeler A, Cheng D, Allen K, et al. Transmyocardial laser revascularization: a consensus statement of the International Society of Minimally Invasive Cardiothoracic Surgery (ISMICS) 2006. Innovations. 2006;1:314–22.

    Article  PubMed  Google Scholar 

  23. Gibbons RJ, Abrams J, Chatterjee K, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Chronic Stable Angina). Circulation. 2003;107:149–58.

    Article  PubMed  Google Scholar 

  24. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126:3097–137.

    Article  PubMed  Google Scholar 

  25. Hillis LD, Smith PK, Anderson JL, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124:2610–42.

    Article  PubMed  Google Scholar 

  26. Wehberg KE, Julian JS, Todd JC, Ogburn N, Klopp E, Buchness M. Improved patient outcomes when transmyocardial revascularization is used as adjunctive revascularization. Heart Surg Forum. 2003;6:328–30.

    PubMed  Google Scholar 

  27. Peterson ED, Kaul P, Kaczmarek RG, et al. From controlled trials to clinical practice: monitoring transmyocardial revascularization use and outcomes. J Am Coll Cardiol. 2003;42:1611–6.

    Article  PubMed  Google Scholar 

  28. Allen KB, Dowling RD, Richenbacher W. From controlled trial to clinical practice: monitoring transmyocardial revascularization use and outcomes. J Am Coll Cardiol. 2004;43:2364–5.

    Article  PubMed  Google Scholar 

  29. Allen KB, Dowling RD, DelRossi AJ, et al. Transmyocardial laser revascularization combined with coronary artery bypass grafting: a multicenter, blinded, prospective, randomized, controlled trial. J Thorac Cardiovasc Surg. 2000;119:540–9.

  30. Allen KB, Dowling RD, Schuch DR, et al. Adjunctive transmyocardial revascularization: five-year follow-up of a prospective, randomized, trial. Ann Thorac Surg. 2004;78:458–65.

    Article  PubMed  Google Scholar 

  31. Frazier OH, Boyce SW, Griffith BP, et al. Transmyocardial revascularization using a synchronized CO2 laser as adjunct to coronary artery bypass grafting: results of a prospective, randomized multi-center trial with 12 month follow-up. Circulation. 1999:100:I248.

  32. Frazier OH, Tuzun E, Eichstadt A, et al. Transmyocardial laser revascularization as an adjunct to coronary artery bypass grafting: a randomized, multicenter study with 4-year follow-up. Tex Heart J. 2004;31:231–9.

    CAS  Google Scholar 

  33. Diamond EG, Kittle CF, Crockett JE. Evaluation of internal mammary artery ligation and sham procedure in angina pectoris. Circulation. 1958;18:712–3.

  34. Cobb LA, Thomas GI, Dillard DH, Merendino KA, Bruce RA. An evaluation of internal- mammary- artery ligation by a double-blind technic. N Engl J Med. 1959;260:1115–8.

    Article  CAS  PubMed  Google Scholar 

  35. Kwong KF, Kanellopoulos GK, Nickols JC, et al. Transmyocardial laser treatment denervates canine myocardium. J Thorac Cardiovasc Surg. 1997;114:883–90.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Sheikh T, Allen KB, Straka SP, et al. Cardiac sympathetic denervation after transmyocardial laser revascularization. Circulation. 1999;100:135–40.

    Article  CAS  PubMed  Google Scholar 

  37. Beek JF, van der Sloot JA, Huikeshoven M, et al. Cardiac denervation after clinical transmyocardial laser revascularization: short-term and long-term iodine 123-labeled meta-iodobenzylguanide scintigraphic evidence. J Thorac Cardiovasc Surg. 2004;127:517–24.

    Article  PubMed  Google Scholar 

  38. Muxi A, Magrina J, Martin F, et al. Technetium 99m-labeled tetrofosmin and iodine 123-labeled metaiodobenzylguanide scintigraphy in the assessment of transmyocardial laser revascularization. J Thorac Cardiovasc Surg. 2003;125:1493–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hughes GC, Baklanov DV, Biswas SS, et al. Regional cardiac sympathetic innervation early and late after transmyocardial laser revascularization. J Card Surg. 2004;19:21–7.

    Article  PubMed  Google Scholar 

  40. Tran R, Brazio PS, Kallam S, Gu J, Poston RS. Transmyocardial laser revascularization enhances blood flow within bypass grafts. Innovations. 2007;2:226–30.

    Article  PubMed  Google Scholar 

  41. Yamamoto N, Kohmoto T, Gu A, DeRosa C, Smith CR, Burkhoff D. Angiogenesis is enhanced in ischemic canine myocardium by transmyocardial laser revascularization.JACC.1998;31:1426–33.

  42. Kohmoto T, DeRosa CM, Yamamoto N, et al. Evidence of vascular growth associated with laser treatment of normal canine myocardium. Ann Thorac Surg. 1998;65:1360–7.

    Article  CAS  PubMed  Google Scholar 

  43. Malekan R, Reynolds CF, Narula N, Kelley ST, Suzuki Y, Bridges CR. Angiogenesis in transmyocardial laser revascularization. A nonspecific response to injury. Circulation. 1998;98:II62–5.

    CAS  PubMed  Google Scholar 

  44. Huikeshoven M, Belien J, Tukkie R, Beek JF. The vascular response induced by transmyocardial laser revascularization is determined by the size of the channel scar: results of CO2, holmium and excimer lasers. Lasers Surg Med. 2004;35:35–40.

    Article  PubMed  Google Scholar 

  45. Hughes GC, Lowe JE, Kypson AP, et al. Neovascularization after transmyocardial laser revascularization in a model of chronic ischemia. Ann Thorac Surg. 1998;66:2029–36.

    Article  CAS  PubMed  Google Scholar 

  46. Hughes GC, Kypson AP, Annex BH, et al. Induction of angiogenesis after TMR: a comparison of holmium:YAG, CO2, and excimer lasers. Ann Thorac Surg. 2000;70:504–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hughes GC, Biswas SS, Yin B, et al. A comparison of mechanical and laser transmyocardial revascularization for induction of angiogenesis and arteriogenesis in chronically ischemic myocardium. J Am Coll Cardiol2002;39:1220–28.

    Article  PubMed  Google Scholar 

  48. Domkowski PW, Biswas SS, Steenbergen C, Lowe JE. Histological evidence of angiogenesis 9 months after transmyocardial laser revascularization. Circulation. 2001;103:469–71.

    Article  CAS  PubMed  Google Scholar 

  49. Hughes GC, Lowe JE. Revascularization versus denervation: what are the mechanisms of symptom relief? In: Abela GS, editor. Myocardial revascularization: novel percutaneous approaches. New York: Wiley-Liss; 2002. p. 63–79.

    Google Scholar 

  50. Allen KB, Kelly J, Borkon AM, et al. TMR: from randomized trials to clinical practice. a review of techniques, evidence based outcomes, and future directions. Anesthesiol Clin. 2008;26:501–19.

    Article  PubMed  Google Scholar 

  51. Atluri P, Suarez EE, Liao GP, et al. Transmyocardial revascularization to enhance myocardial vasculogenesis and hemodynamic function. J Thorac Cardiovasc Surg. 2008;135:283–91.

    Article  CAS  PubMed  Google Scholar 

  52. Horvath KA, Chiu E, Maun D, et al. Up-regulation of vascular endothelial growth factor mRNA and angiogenesis after transmyocardial laser revascularization. Ann Thorac Surg. 1999;68:825–9.

    Article  CAS  PubMed  Google Scholar 

  53. Selke FW, Ruel M. Vascular growth factors and angiogenesis in cardiac surgery. Ann Thorac Surg. 2003;75:S685–90.

    Article  Google Scholar 

  54. Losordo DW, Schatz RA, White CJ, et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation. 2007;115:3165–72.

    Article  PubMed  Google Scholar 

  55. Pompillo G, Steinhoff G, Liebold A, et al. Direct minimally invasive intramyocardial injection of bone marrow -derived AC133+ stem cells in patients with refractory ischemia: preliminary results. Thorac Cardiovasc Surg. 2008;56:71–6.

    Article  Google Scholar 

  56. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  CAS  PubMed  Google Scholar 

  57. Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167:989–97.

    Article  PubMed  Google Scholar 

  58. Patel AN, Spadaccio C, Kuzman M, et al. Improved cell survival in infarcted myocardium using a novel combination transmyocardial laser and cell delivery system. Cell Transplant. 2007;16:899–905.

    Article  PubMed  Google Scholar 

  59. Rosenzweig A. Cardiac cell therapy – mixed results from mixed cells. N Engl J Med. 2006;355:1274–7.

    Article  CAS  PubMed  Google Scholar 

  60. Reyes G, Allen KB, Aguado B, et al. Bone marrow laser revascularisation for treating refractory angina due to diffuse coronary heart disease. Eur J Cardiothorac Surg. 2009;36:192–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith B. Allen.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflicts of interest

Dr. Keith Allen has had prior research support from CryoLife, Inc., as national PI for TMR studies (none currently) and currently serves in the speaker’s bureau. Amy Mahoney is employed by CryoLife, Inc. All other authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not necessary for the review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, K.B., Mahoney, A., Aggarwal, S. et al. Transmyocardial revascularization (TMR): current status and future directions. Indian J Thorac Cardiovasc Surg 34 (Suppl 3), 330–339 (2018). https://doi.org/10.1007/s12055-018-0702-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-018-0702-7

Keywords

Navigation