Skip to main content

Advertisement

Log in

Neurological injury in paediatric cardiac surgery

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Although the safety of paediatric heart surgery has been established, neurologic injuries are still a major source of comorbidity and mortality. The intra-uterine hypoxic milieu coupled with abnormal circulation poses threat to the developing brain. Neurologic injuries vary depending on the level and extent of injury as well as the aetiology, which may be multifactorial. Radiologic signs are late. Various biochemical markers and neuromonitoring modalities enable prediction of neuronal damage. Neuroprotection strategies in these children aim at skilful preoperative assessment, optimal cardiopulmonary bypass strategies, early detection and correction of metabolic parameters. In view of the complex mechanisms and multiple factors involved in neurologic insults, a thorough understanding of pathophysiology and meticulous attention to the details is required to prevent the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Limperopoulos C, Majnemer A, Shevell MI, et al. Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr. 2002;141:51–8.

    Article  PubMed  Google Scholar 

  2. Kaltman JR, Di H, Tian Z, Rychik J. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol. 2005;25:32–6.

    Article  CAS  PubMed  Google Scholar 

  3. Donofrio MT, Bremer YA, Schieken RM, et al. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol. 2003;24:436–43.

  4. Hsia TY, Gruber PJ. Factors influencing neurologic outcome after neonatal cardiopulmonary bypass: what we can and cannot control. Ann Thorac Surg. 2006;81:S2381–8.

    Article  PubMed  Google Scholar 

  5. Miller SP, McQuillen PS. HamrickS, et al. Abnormal Brain Development in Newborns with Congenital Heart Disease. N Engl J Med. 2007;357:1928–38.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy PJ. The fetal circulation. ContinEducAnaesth Crit Care Pain. 2005;5:107–12.

    Article  Google Scholar 

  7. Soto CB, Olude O, Hoffmann RG, et al. Implementation of a routine developmental follow-up program for children with congenital heart disease: early results. Congenit Heart Dis. 2011;6:451–60.

    Article  PubMed  Google Scholar 

  8. Hirsch JC, Jacobs ML, Andropoulos D, et al. Protecting the Infant Brain During Cardiac Surgery: A Systematic Review Ann. Thorac Surg. 2012;94:1365–73.

    Article  Google Scholar 

  9. Licht DJ, Shera DM, Clancy RR, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009;137:529–37.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chang T, Jonas RA. Neurologic complications of cardiovascular surgery. Curr Neuro Neurosc Rep. 2006;6:121–6.

    Article  Google Scholar 

  11. Ferry PC. Neurologic sequelae of open-heart surgery in children.An‘irritating question’. Am J Dis Child. 1990;144:369–73.

    Article  CAS  PubMed  Google Scholar 

  12. Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW. Current Incidence of Acute Neurologic Complications After Open-Heart Operations in Children. AnnThoracSurg. 2002;73:1752–8.

    Google Scholar 

  13. Galli KK, Zimmerman RA, Jarvik GP. e al.Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2004;127:692–704.

    Article  PubMed  Google Scholar 

  14. Mahle WT, Tavani F, Zimmerman RA, et al. An MRI Study of Neurological Injury Before and After Congenital Heart Surgery. Circulation. 2002;106:I-109–14.

    Google Scholar 

  15. Kinney HC, Panigrahy A, Newburger JW, Jonas RA, Sleeper LA. Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol. 2005;110:563–78.

    Article  PubMed  Google Scholar 

  16. Martin AB, Bricker JT, Fishman M, et al. Neurologic complications of heart transplantation in children. J Heart Lung Transplant. 1992;11:933–42.

    CAS  PubMed  Google Scholar 

  17. Chen J, Zimmerman RA, Jarvik GP, et al. Perioperative Stroke in Infants Undergoing Open Heart Operations for Congenital Heart Disease. Ann Thorac Surg. 2009;88:823–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ken MB, Jennifer OM, Jennifer KL, Thompson R, Hogue CW, Blaine Easley R, et al. Monitoring Cerebral Blood Flow Pressure Autoregulation in Pediatric Patients During Cardiac Surgery. Stroke. 2010;41:1957–62.

    Article  Google Scholar 

  19. Tovedal T, Jonsson O, Zemgulis V, Myrdal G, Thelin S, Venous F. obstruction and cerebral perfusion during experimental cardiopulmonary bypass. InteractCardioVasc Thorac Surg. 2010;11:561–6.

    Article  Google Scholar 

  20. Hogue CW, Gottesman RF, Stearns J. Mechanisms of cerebral injury from cardiac surgery. Crit Care Clin. 2008;24:83–98.

  21. Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low flow cardiopulmonary bypass in infant heart surgery. NEngl J Med. 1993;329:1057–64.

    Article  CAS  Google Scholar 

  22. Muth CM, Shank ES. Gas embolism. N Engl J Med. 2000;342:476–82.

    Article  CAS  PubMed  Google Scholar 

  23. Nussmeier NA. Management of Temperature During and After Cardiac Surgery. Tex Heart Inst J. 2005;32:472–6.

    PubMed  PubMed Central  Google Scholar 

  24. Bissonnette B, Holtby HM, Davis AJ, Pua H, Gilder FJ, Black M. Cerebral hyperthermia in children after cardiopulmonary bypass. Anesthesiology. 2000;93:611–8.

    Article  CAS  PubMed  Google Scholar 

  25. Nathan HJ, Wells GA, Munson JL, Wozny D. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: a randomized trial. Circulation. 2001;104:I-85– 91.

    Article  CAS  Google Scholar 

  26. Caputo M, Mokhtari A, Rogers CA, et al. The effects of normoxic versus hyperoxic cardiopulmonary bypass on oxidative stress and inflammatory response in cyanotic pediatric patients undergoing open cardiac surgery; a randomized controlled trial. J Thorac Cardiovasc Surg. 2009;138:206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramlawi B, Rudolph JL, Mieno S, et al. Serologic markers of brain injury and cognitive function after cardiopulmonary bypass. Ann Surg. 2006;244:593–601.

    PubMed  PubMed Central  Google Scholar 

  28. Polito A, Thiagarajan RR, Laussen PC, et al. Association between intraoperative and early post operative glucose levels and adverse outcomes after complex congenital heart surgery. Circulation. 2008;118:2235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wypij D, Jonas R A, Bellinger D C, et al. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: Results from the combined Boston hematocrit trials. JThoracCardiovasc Surg .2008;135 :355-360.

  30. Zipes DP. Heart-brain interactions in cardiac arrhythmias: role of the autonomic nervous system. CleveClin J Med. 2008;75:S94–6.

    Google Scholar 

  31. Loepke AW, Soriano SG. An Assessment of the Effects of General Anesthetics on Developing Brain Structure and Neurocognitive Function. AnesthAnalg. 2008;106:1681–707.

    Google Scholar 

  32. Miller G, Tesman JR, Ramer JC, Baylen BG, Myers JL. Outcome after open-heart surgery in infants and children. J Child Neurol. 1996;11:49–53.

    Article  CAS  PubMed  Google Scholar 

  33. Hovels-Gurich HH, Seghaye MC, Dabritz S, Messmer BJ, von Bernuth G. Cognitive and motor development in preschool and school-aged children after neonatal arterial switch operation. J Thorac Cardiovas Surg. 1997;114:578–85.

    Article  CAS  Google Scholar 

  34. Faberowski LW, Quinonez ZA, Hammer GB. Anesthesia and the Developing Brain: Relevance to the Pediatric Cardiac Surgery. Brain Sci. 2014;4:295–310.

    Article  Google Scholar 

  35. Hirsch JC, Jacobs ML, Andropoulos D, et al. Protecting the infant brain during cardiac surgery: a systematic review. Ann Thorac Surg. 2012;94:1365–73.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grocott HP, White WD, Morris RW, ,et al. Perioperative Genetics and Safety Outcomes Study (PEGASUS) Investigate Team: Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke. 2005; 36:1854-1858.

    Article  CAS  PubMed  Google Scholar 

  37. Albers EL, Bichell DP, McLaughlin B. New Approaches To Neuroprotection In Infant Heart Surgery. Pediatr Res. 2010;68:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Trittenwein G, Nardi A, Pansi H, et al. Early postoperative prediction of cerebral damage after pediatric cardiac surgery. Ann Thorac Surg. 2003;76:576–80.

    Article  PubMed  Google Scholar 

  39. Shaaban Ali M, Harmer M, Vaughan R. Serum S100 protein as a marker of cerebral damage duringcardiac surgery. Br J Anaesth. 2000;85:287–98.

    Article  Google Scholar 

  40. Siman R, Roberts V, McNeil E, et al. Biomarker Evidence for Mild Central Nervous System Injury After Surgically-Induced Circulation Arrest. Brain Res. 2008;1213:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoffman GM. Pro: near-infrared spectroscopy should be used for all cardiopulmonary bypass. J CardiothoracVascAnesth. 2006;20:606–12.

    Google Scholar 

  42. Clark JB, Barnes ML, Undar A, Myers JL. Multimodality Neuromonitoring for Pediatric Cardiac Surgery: Our Approach and a Critical Appraisal of the Available Evidence. World J Pediatr CongenHeart Surg. 2012;3:87–95.

    Article  Google Scholar 

  43. Hirsch JC, Charpie JR, Ohye RG, Gurney JG. Near-infrared spectroscopy: what we know and what we need to know—a systematic review of the congenital heart disease literature. J Thorac Cardiovasc Surg. 2009;137:154–9.

    Article  PubMed  Google Scholar 

  44. McQuillen PS, Barkovich AJ, Hamrick SEG, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke. 2007;38:736–41.

    Article  PubMed  Google Scholar 

  45. Kussman BD, Wypij D, Laussen PC, et al. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation. 2010;122:245–54.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Halsey Jr JH. Risks and benefits of shunting in carotid endarterectomy. The International Transcranial Doppler Collaborators. Stroke. 1992;23:1583–7.

    Article  PubMed  Google Scholar 

  47. Gugino LD, Aglio LS, Edmonds Jr HL. Neurophysiological monitoring in vascular surgery. Baillieres ClinAnaesth. 2000;14:17–62.

    Google Scholar 

  48. Rodriguez RA, Cornel G, Semelhago L, Splinter WM, Weerasena NA. Cerebral effects in superior vena caval cannula obstruction: the role of brain monitoring. Ann Thorac Surg. 1997;64:1820–2.

    Article  CAS  PubMed  Google Scholar 

  49. Edmonds Jr HL, Isley MR, Sloan TB, Alexandrov AV, Razumovsky AY. American Society of Neurophysiological Monitoring and American society of Neuroimaging Joint Guidelines for transcranialdoppler ultrasonic monitoring. J Neuroimaging. 2011;21:177–83.

    Article  PubMed  Google Scholar 

  50. Schmitt B, Jenni OG, Bauersfeld U, Schupbach R, Schmid ER. Spindle activity in children during cardiac surgery and hypothermic cardiopulmonarybypass. J Clin Neurophysiol. 2002;19:547–52.

    Article  PubMed  Google Scholar 

  51. Schmitt B, Finckh B, Christen S, et al. Electroencephalographic changes after pediatric cardiac surgery with cardiopulmonary bypass: is slow wave activity unfavorable? Pediatr Res. 2005;58:771–8.

    Article  PubMed  Google Scholar 

  52. Limperopoulos C, Majnemer A, Rosenblatt B, et al. Association between electroencephalographic findings and neurologic status in infants with congenital heart defects. J Child Neurol. 2001;16:471–6.

    Article  CAS  PubMed  Google Scholar 

  53. Isley MR, Edmonds Jr HL, Stecker M. Guidelines for intraoperativeneuromonitoring using raw (analog or digital waveforms) and quantitative electroencephalography: a position statement by the American Society of Neurophysiological Monitoring. J ClinMonit Comput. 2009;23:369–90.

    Google Scholar 

  54. Andropoulos DB, Brady KM, Easley RB, Fraser CD. Neuroprotection in Pediatric Cardiac Surgery: What is On the Horizon? Prog Pediatr Cardiol. 2010;29:113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ranger M, Grunau RE. Early repetitive pain in preterm infants in relation to the developing brain. Pain Manag. 2014;4:57–67.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sprung J, Flick RP, Katusic SK, et al. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc. 2012;87:120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mokhtari A, Lewis M. Normoxic and Hyperoxic Cardiopulmonary Bypass in Congenital Heart Disease. Bio Med Research International Volume 2014, Article ID 678268, pages 11

  58. Du Plessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J ThoracCardiovasc Surg. 1997;114:991–1000.

    CAS  Google Scholar 

  59. Karl TR, Hall S, Ford G, et al. Arterial switch with full-flow cardiopulmonary bypass and limited circulatory arrest: neurodevelopmental outcome. J Thorac Cardiovasc Surg/. 2004;127:213–22.

    Article  Google Scholar 

  60. Visconti KJ, Rimmer D, Gavreau K, et al. Regional low-flow perfusion versus circulatory arrest in neonates: one-year neurodevelopmental outcome. Ann Thorac Surg. 2006;82:2207–13.

    Article  PubMed  Google Scholar 

  61. Andropoulos DB, Stayer SA, McKenzie ED, Fraser Jr CD. Regional low-flow perfusion provides comparable blood flow and oxygenation to both cerebral hemispheres during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg. 2003;126:1712–7.

    Article  PubMed  Google Scholar 

  62. Talwar S, Mishra A, Choudhary SK, Airan B. Homograft saphenous vein for facilitating arterial cannulation in a neonate. Ann Thorac Surg. 2009;87:969–70.

    Article  PubMed  Google Scholar 

  63. Woodgate PG, Davies MW. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev. 2001;2:CD002061.

    Google Scholar 

  64. Thome UH, Carroli W, Wu TJ, et al. Outcome of extremely preterm infants randomised at birth to different PaCO2 targets during the first seven days of life. Biol neonate. 2006;90:218–25.

    Article  PubMed  Google Scholar 

  65. Wilson JM, Lund DP, Lillehei CW, Vacanti JP. Congenital Diaphragmatic Hernia-a tale of two cities:the Boston Experience. J Pediatr Surg. 1997;32:401–5.

    Article  CAS  PubMed  Google Scholar 

  66. Guidry CA, Hranjec T, Rodgers BM, Kane B, McGahren ED. Permissive Hypercapnia in the management of congenital Diaphragmatic Hernia: our institutional Experience. J Am Coll Surg. 2012;214:640–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Anand KJ, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62:283–90.

    Article  CAS  PubMed  Google Scholar 

  68. Loepke AW, Priestley MA, Schultz SE, McCann J, Golden J, Kurth CD. Desflurane improves neurologic outcome after low-flow cardiopulmonary bypass in newborn pigs. Anesthesiology. 2002;97:1521–7.

    Article  CAS  PubMed  Google Scholar 

  69. Sanders RD, Sun P, Patel S, Li M, Maze M, Ma D. Dexmedetomidineprovides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain. ActaAnaesthesiol Scand. 2010 ;54:710-716

  70. Laptook AR. Use of therapeutic hypothermia for term infants with hypoxic-ischemic encephalopathy. PediatrClin North Am. 2009;56:601–16.

    Article  Google Scholar 

  71. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Andropoulos DB, East DL, Eble BK, Stapleton GE, Chang AC. Preoperative cerebral oxyhemoglobin saturation in neonates undergoing cardiac surgery with cardiopulmonary bypass. Anesthesiology. 2005;103:A1341.

    Article  Google Scholar 

  73. Andropoulos DB, Hunter JV, Nelson DP, et al. Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J ThoracCardiovasc Surg. 2010;139:543–56.

    Google Scholar 

  74. Maise K, Li F, Chiong ZZ. New avenues of exploration for erythropoetin. JAMA. 2005;293:90–5.

    Article  Google Scholar 

  75. Liu R, Suzuki A, Guo Z, et al. Intrinsic and extrinsic erythropoetin enhances neuroprotection against ischemia and reperfusion injury in vitro. J Neurochem. 2006;96:1101–10.

    Article  CAS  PubMed  Google Scholar 

  76. Prass K, Scharff A, Ruscher K, et al. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke. 2003;34:1981–6.

    Article  CAS  PubMed  Google Scholar 

  77. Liu J, Narasimhan P, Yu F, Chan PH. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxiainducible factor and erythropoietin. Stroke. 2005;36:1264–9.

    Article  CAS  PubMed  Google Scholar 

  78. Chong ZZ, Kang JQ, Maiese K. Hematopoietic factor erythropoietin fosters neuroprotection through novel signal transduction cascades. J Cereb Blood Flow Metab. 2002;22:503–14.

    Article  CAS  PubMed  Google Scholar 

  79. Givehchian M, Beschorner R, Ehmann C, et al. Neuroprotective effects of erythropoietin during deep hypothermic circulatory arrest.Euro. J Cardiothorac Surg. 2010;37:662–8.

    Article  Google Scholar 

  80. Leist M, Ghezzi P, Grasso G, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science. 2004;305:239–42.

    Article  CAS  PubMed  Google Scholar 

  81. Andropoulos DB, Brady K, Easley RD, et al. Erythropoietin neuroprotection in neonatal cardiac surgery: A phase I/II safety and efficacy trial. J Thorac Cardiovasc Surg. 2013;146:124–31.

    Article  CAS  PubMed  Google Scholar 

  82. Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. JCereb Blood Flow Metab. 2000;20:1393–408.

    Article  CAS  Google Scholar 

  83. Schäbitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststrokesensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38:2165–72.

    Article  PubMed  Google Scholar 

  84. Fan CG, Zhang QJ, Tang FW, Han ZB, Wang GS, Han ZC. Human umbilical cord blood cells express neurotrophic factors. NeurosciLett. 2005;380:322–5.

    CAS  Google Scholar 

  85. Levey A, Glickstein JS, Kleinman CS, et al. The impact of prenatal diagnosis of complex congenital heart disease on neonatal outcomes. Pediatr Cardiol. 2010;31:587–97.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ben-Abraham R, Weinbroum AA, Dekel B, Paret G. Chemokines and the inflammatory response following cardiopulmonary bypass: a new target for therapeutic intervention? A review. PaediatrAnaesth. 2003;13:655–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Talwar.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest and do not receive any research grants from any company, have not received a speaker honorarium from any company, do not own any stock in any company and are not members of a committee.

Funding

The study did not receive any funding.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the Institutional and National Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talwar, S., Nair, V.V., Choudhary, S.K. et al. Neurological injury in paediatric cardiac surgery. Indian J Thorac Cardiovasc Surg 33, 15–28 (2017). https://doi.org/10.1007/s12055-016-0481-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-016-0481-y

Keywords

Navigation