Skip to main content

Advertisement

Log in

Cytotoxicity and sensitization studies of processed porcine xenografts

  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Back ground

The unlimited requirement of valved graft material and nonavailability of homogratfs has made it necessary to resort to xenogenic sources. Immunogenicity of xenografts plays a vital role in the graft biocompatibility. Immunogenic reaction may lead to calcification and finally graft failure.

Methods

To render the processed xenografts non-cytotoxic, the xenografts were processed at different stages with chemicals, while keeping a keen check on their toxic properties. Tests were done at various levels in vitro and in vivo to evaluate the cytotoxicity of the processed xenografts. In vitro cytotoxicity studies of the test samples were conducted on Bagg Albino clone mice strain (BALB/C3T3 cell line), using direct and indirect contact method. In vivo toxicity studies were conducted by administering the test sample extracts into Swiss albino male mice. Sensitization studies were performed on Guinea pigs. Test extracts were administered to the animals over the period of induction phase; topical induction phase and challenge phase.

Results

The processed xenograft tissues when subjected to in vitro cytotoxicity test with BALB/C3T3 cell line and the in vivo tests did not show any cytotoxicity.

Conclusion

The studies proved that the processing methodology rendered the xenografts non-cytotoxic and safe for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoganathan AP. Cardiac valve prosthesis. In: Bronzino JD, editor. The biomedical engineering handbook. Boca Raton, CRC, 1995.p. 1847–1870.

    Google Scholar 

  2. Schoen FJ, Levy RJ. Foundation Award 25th Annual meeting of the society for biomaterials, perspectives. Providence, RI, April 28–May 2, 1999. Tissue heart valves:current challenges and future research prospectives. J Biomed Mater Res 1999;47:439–465.

    Article  PubMed  CAS  Google Scholar 

  3. Magilligan DJ Jr, Lewis JW Jr, Tilley B, Peterson E. The porcine bioprosthetic valve. Twelve years later. J Thorac Cardiovasc Surg 1985;89:499–507.

    PubMed  Google Scholar 

  4. Cohn LH, Allred EN, Cohn LA, et al. Early and late risk of mitral valve replacement. A 12 year concomitant comparison of the porcine bioprosthetic disc mitral valves. J Thorac Cardiovasc Surg 1985;90:872–881.

    PubMed  CAS  Google Scholar 

  5. Ferrans VJ, Boyce SW, Billingham ME, Jones M, Ishihara T, Robert WC. Calcific deposits in porcine bioprosthesis:structure and pathogenesis. Am J Cardiol 1980; 46: 721–734.

    Article  PubMed  CAS  Google Scholar 

  6. Guhathakurta S, Verghese S, Balasubramanian V, et al. Technique to process xenogenic tissues for cardiovascular implantation-A preliminary report. Current Science 2006;91:1068–1073.

    CAS  Google Scholar 

  7. Valente M, Bortolotti U, Thiene G. Ultrastructural substrates of dystrophic calcification in porcine bioprasthetic valve failure. Am J Pathol 1985;119:12–21.

    PubMed  CAS  Google Scholar 

  8. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res 1994;28:655–666.

    Article  PubMed  CAS  Google Scholar 

  9. Levy RJ, Schoen FJ, Anderson HC, et al. Cardiovascular implant calcification: a survey and update. Biomaterials 1991;12:707–714.

    Article  PubMed  CAS  Google Scholar 

  10. Schoen FJ, Levy RJ, Nelson AC, Bernhard WF, Nashef A, Hawley M. onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest 1985;52:523–532.

    PubMed  CAS  Google Scholar 

  11. Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprosthesis and drug delivery matrices. Biomaterials 1996;17:471–484.

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt SE, Baier JM. Acellular vascular tissues:natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000;21:2215–2231.

    Article  PubMed  CAS  Google Scholar 

  13. Hilbert SL, Ferrans VJ, Jones M. Tissue-derived biomaterials and their use in cardiovascular prosthetic devices. Med Prog Technol 1988–89;14:115–163.

    PubMed  Google Scholar 

  14. Dahm M, Lyman WD, Schwell AB, Factor SM, Frater RW. Immunogenicity of glutaraldehyde-tanned bovine pericardium. J Thorac Cardiovasc Surg 1990;99:1082–1090.

    PubMed  CAS  Google Scholar 

  15. Coito AJ, Kupiec-Weglinski JW. Extracellular matrix proteins: bystanders or active participants in the allograft rejection cascade?. Ann Transplant 1996;1:14–18.

    PubMed  CAS  Google Scholar 

  16. Carpentier A, Lemaigre G, Robert L, Carpentier S, Dubost C. Biological factors affecting long-term results in Valvular heterografts. J Thorac Cardiovasc Surg 1969;58:467–483.

    PubMed  CAS  Google Scholar 

  17. Yannas IV. Natural Materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, eds. Biomaterial science, An introduction to materials in medicine. San Diego: Academic Press 1996.p. 84–94.

    Google Scholar 

  18. Lee WK, Park KD, Han DK, Suh H, Park JC, Kim YH. Heparinized bovine pericardium as a novel cardiovascular bioprosthesis. Biomaterials 2000;21:2323–2330.

    Article  PubMed  CAS  Google Scholar 

  19. Chanda J. Prevention of calcification of heart valve bioprosthesis: an experimental study in rat. Ann Thorac Surg 1995;60:S339–42.

    Article  PubMed  CAS  Google Scholar 

  20. Gendler E, Gendler S, NIMNI ME. Toxic reactions evoked by glutaraldehyde-fixed pericardium and cardiac valve tissue bioprosthesis. J Biomed Mter Res 1984;18:727–736.

    Article  CAS  Google Scholar 

  21. Eybl E, Griesmacher A, Grimm M. Wolner E. Toxic effects of aldehydes released from fixed pericardium on bovine aortic endothelial cells. J Biomed Mater Res 1989;23:1355–1365.

    Article  PubMed  CAS  Google Scholar 

  22. Speer DP, Chvapil M, Eskelson CD, Ulreich J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 1980;14:753–764.

    Article  PubMed  CAS  Google Scholar 

  23. Weadock K, Olson RM, Silver FH. Evaluation of collagen crosslinking techniques. Biomater Med Dev Artif Organs 1983–84;11:293–218.

    Google Scholar 

  24. Huang Lee LL, Chaung DT, Nimni ME. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res 1990;24:1185–1201.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Guhathakurta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekaran, R., Balasundari, R., Sivasubramanian, V. et al. Cytotoxicity and sensitization studies of processed porcine xenografts. Indian J Thorac Cardiovasc Surg 23, 246–250 (2007). https://doi.org/10.1007/s12055-007-0050-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-007-0050-5

Key words

Navigation