Skip to main content


Log in

Retrofit with Passive House components

  • Published:
Energy Efficiency Aims and scope Submit manuscript


The Passive House is a performance-based efficiency standard for new buildings. The factors that lead to very low heating and cooling demands include compact shape, favourable orientation and size of windows, good insulation, optimised thermal bridges, high-performance glazing, insulated window frames, airtightness, mechanical ventilation with heat or energy recovery, cool colours and solar control. Many of these components can also be used in retrofits of existing buildings, although Passive House levels of energy efficiency are often hard to achieve in renovation. EnerPHit is a voluntary standard for high-efficiency retrofits that is based on the use of typical Passive House components. It pursues economic efficiency and simultaneously addresses thermal comfort, indoor air quality, climate protection and hygrothermal performance. This paper is the first fully comprehensive publication of the foundations upon which the EnerPHit criteria were developed. Furthermore, we present five EnerPHit example buildings, including energy consumption data, costs and solutions for the challenges that arose in the practical implementation: a multifamily residence in Frankfurt, Germany, two row houses in Hereford, the UK and New York, USA, a school in Innsbruck, Austria, and a high-rise in Gothenburg, Sweden. Where measured performance data are available, they confirm very low energy consumptions of the refurbishments. The corresponding investments can be profitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48

Similar content being viewed by others


  1. Another improved window frame which is not commercially available yet was assumed with vacuum and quadruple glazing for Type I: Uf = 0.45 W/(m2K), frame width 70 mm, extra costs € 50/m2.

  2. HRV, heat recovery ventilation, i.e. a ventilation unit that is able to transfer heat from the stale exhaust air to the incoming outdoor air.

    ERV: Energy recovery ventilation. In addition to heat, also humidity from the exhaust air is transferred to the incoming air.

  3. This takes into account that using an improved solar protection glazing is always less expensive than additional exterior shading and there are no disadvantages of lower solar heat gains in hot climates.

  4. Currently, the 4 low-e glazing type is hardly used because it is still more expensive than it would be for mass production, as assumed in Table 2.

  5. Water activity (aw value) of a building material is very suitable as a criterion for the likelihood of mould growth (Sedlbauer, 2001). The aw value is defined by the equilibrium relative humidity in a sealed air space within the material. In such a space, the free water contained in the solid determines the relative humidity of the air. With an aw value below 80%, the likelihood of mould growth is very low, even on contaminated old plaster.

  6. Uniform temperature of an imaginary space in which a person would exchange the same amount of heat through radiation and convection as in the existing non-uniform surrounding.

  7. Whilst the increase in the heating demand in the heating period is irrelevant, at least in buildings with appropriate insulation of the external envelope.


  • Arnautu, D. (2020). Passivhaus in the tropics. RICS Property Journal May/June 2020.

  • Bastian, Z. (2011). EnerPHit certification for building modernisation with Passive House components: Initial experience. In Feist, W. (Ed.): Proceedings of the 15th International Passive House Conference in Innsbruck, Passive House Institute, Darmstadt.

  • Bastian, Z., Schnieders, J., Krick, B., Schulz, T. (2014). Comprehensive report on the further development of the EnerPHit building certification criteria and procedures within the 3encult project (task 7.4). Passive House Institute, Darmstadt,

  • Bastian, Z., Pedersen, S., Arnăutu, D. (2015). Stepwise EnerPHit Retrofit: New Certification Scheme and Online Platform. In Feist, W. (Ed.): Proceedings of the 19th International Passive House Conference in Leipzig, Passive House Institute, Darmstadt.

  • Bertone, E., Stewart, R. A., Sahin, O., Alam, M., Zou, P. X. W., Buntine, C., & Marshall, C. (2018). Guidelines, barriers and strategies for energy and water retrofits of public buildings. J Clean Production, 2018(174), 1064–1078.

    Article  Google Scholar 

  • BKI (2018). Baukosteninformationszentrum Deutscher Architektenkammern, BKI Baukosten (2002 - 2018).

  • Bleyl, J. W., Bareit, M, Casas, M. A., Chatterjee, S., Coolen, J., Hulshoff, A., Lohse, R., Mitchel, S., Robertson, M., Ürge-Vorsatz, D. (2019). Office building deep energy retrofit: life cycle cost benefit analyses using cash flow analysis and multiple benefits on project level. In: Energy Efficiency (2019) 12:261–279

  • Bointner, R., Toleikyte, A., Kranzl, L. (2016). Cross-country analysis of the implementation of nearly zero-energy building standards across Europe. In: 2016 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG), Published by: Institute of Electrical and Electronics Engineers (IEEE), Prague.

  • Brasche, S., Heinz, E., Hartmann, T., Richter, W., Bischof, W. (2003). Vorkommen, Ursachen und gesundheitliche Aspekte von Feuchteschäden in Wohnungen. Ergebnisse einer repräsentativen Wohnungsstudie in Deutschland. In: Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz. Occurrence, causes and health aspects of moisture-related damage in homes. Findings of a representative study in Germany. In: Federal Health Bulletin - Research on health - Health protection (in German), 46 (8). 683-693.

  • Carron, M., Barry, M., Xianhai, C., & Shane. (2020). An investigation into indoor radon concentrations in Certified Passive House Homes. In: Intenational Journal of Enrironmental Research and Public Healt, 2020(17), 4149.

    Google Scholar 

  • Dahlöf, L., Malmros, A. (2011). Miljonprogrammet - Riva eller renovera, Examensarbete 2011:90 på Chalmers Tekniska Högskola

  • DIN EN ISO 7730 (2006). Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, Beuth Verlag, Berlin, 2006.

  • Duffie, J. A., Beckman, W.A. (2006). Solar Engineering of Thermal Processes, 3rd ed., John Wiley & Sons.

  • Ekström, T., Blomsterber, Å. (2016). Renovation of Swedish singel-family houses to passive house standard – Analyses of energy savings potential. Energy Procedia, 96(2016), 134–145.

  • EnerPHit criteria (2018). Criteria for the Passive House, EnerPHit and PHI Low Energy Building Standard. Passive House Institute. Accessed 5 Apr 2018.

  • EuroPHit (n.d.): OP25 Stjärnhus Stacken in Gothenburg. Accessed 14 Sep 2018.

  • Feist, W. (Ed.) et al. (2003): Einsatz von Passivhaustechnologien bei der Altbau-Modernisierung, Protokollband Nr. 24 Arbeitskreis kostengünstige Passivhäuser. Use of Passive House technologies for refurbishments, Protocol Volume No. 24 of the Research Group for Cost-effective Passive Houses (In German). Published by: Feist, Dr. Wolfgang, Passive House Institute, Darmstadt.

  • Feist, W. (2005). Hochwärmegedämmte Dächer – Einführung, In Feist, W. (Ed.): Hochwärmegedämmte Dachkonstruktionen, Protokollband Nr. 29 Arbeitskreis Kostengünstige Passivhäuser, Phase III. Highly insulated roofs - Introduction, In: Highly insulated roof constructions, Protocol Volume No. 29 of the Research Group for Cost-effective Passive Houses (In German), Published by: Feist, Dr. Wolfgang, Passive House Institute, Darmstadt.

  • Feist, W. (2007). Passive Houses in practice. In: Fouad, Nabil A. (publisher). Bauphysik-Kalender 2007. Ernst & Sohn, Berlin, 675-741.

  • Feist, W. (Ed.), et al. (2011). Passive Houses for different climate zones. Passive House Institute, Darmstadt.

  • Feist, W. (Ed.), et al. (2013). Ökonomische Bewertung von Energie-effizienzmaßnahmen, In Feist. W. (Ed.): Protokollband Nr. 42 Arbeitskreis Kostengünstige Passivhäuser, Phase V. Economic evaluation of energy efficiency measures, in: Protocol Volume No. 42 of the Research Group for Cost-effective Passive Houses (in German). Published by: Feist, Dr. Wolfgang, Passive House Institute, Darmstadt.

  • Feist, W. (Ed.) (2015). Conference proceedings of the 19th International Passive House Conference 2015 in Leipzig, Passive House Institute Darmstadt.

  • Feist, W. (Ed.) (2016). Conference proceedings of the 20th International Passive House Conference 2016 in Darmstadt, Passive House Institute Darmstadt.

  • Feist, W. (Ed.) (2018). Conference proceedings of the 22nd International Passive House Conference 2018 in Munich, Passive House Institute Darmstadt.

  • Feist, W., Pfluger, R., Hasper, W. (2019). Durability of building fabric components and ventilation systems in passive houses. Energy Efficiency (2019).

  • Ferreira, M. (2017). Almeida, Manuela, Rodrigues, Ana (2017): Impact of co-benefits on the assessment of energy related building renovation with a nearly-zero energy target. Energy and Buildings, 152, 587–601.

    Article  Google Scholar 

  • Filippi, M., Dorigo, M., Bonotto, M. (2017). Office Building certified to Passive House Standard in Dubai, UAE. Conference proceedings of the 21st International Passive House Conference 2017 in Vienna, Passive House Institute Darmstadt.

  • Goldstein, B., Gounaridis, D., Newell, J. P. (2020). The carbon footprint of household energy use in the United States. PNAS, 117(32), 19122–19130.

  • International Energy Agency (2012). Energy Technology Perspectives. 2012 Pathways to a Clean Energy System. Paris: OECD/IEA.

  • Johnston, D., Siddall, M, Ottinger, O., Peper, S., Feist, W. (2020): Are the energy savings of the passive house standard reliable? A review of the as-built thermal and space heating performance of passive house dwellings from 1990 to 2018. Energy Efficiency (2020).

  • Kah, Oliver et al.(2010). Untersuchung zum Außenluftwechsel und zur Luftqualität in sanierten Wohnungen mit konventioneller Fensterlüftung und mit kontrollierter Lüftung, Endbericht IEA SHC TASK 37 Tubtask C, Passive House Institute.

  • Kaufmann, B., Peper, S., Pfluger, R., Feist, W. (2009). Sanierung mit Passivhauskomponenten, Planungsbegleitende Beratung und Qualitätssicherung, Endbericht zum Sanierungsprojekt Tevesstraße Frankfurt am Main, Passivhaus Institut.

  • Kaufmann, B., Peper, S., Pfluger, R., Feist, W. (2009a). Wissenschaftliche Begleitung der Passivhaus-Sanierung Tevesstraße Frankfurt am Main, published in Proceedings of the International Passive House Conference, Darmstadt.

  • Lude, G., Werner, J. (2004). Das Passivhaus im Thiepvalareal, Part 1 + Part 2, in EnergieEffizientes Bauen (EB) 2/2004 + 3/2004,, Accessed on 23 July 2018.

  • McCarron, B., Meng, X., Colclough, S. (2020). An Investigation into Indoor Radon Concentrations in Certified Passive House Homes. International Journal of Environmental Research and Public Health, 17, 4149.

  • Meteonorm 6.1 (2010). Global Meteorological Database for Solar Energy and Applied Meteorology. Meteotest, Bern.

  • Mitchell, R., Natarajan, S. (2021). UK Passivhaus and the energy performance gap. Energy and Buildings (2020).

  • Mlecnik, E. (2016). Chances and barriers for passive house renovations. In I. Opstelten, R. Rovers, N. Verdeyen, & A. Wagenaar (Eds.), Sustainable Built Environment: Transition Zero: Conference Publication of the Utrecht SBE16 Conference (pp. 11–19). HU University of Applied Sciences.

    Google Scholar 

  • NASA Langley Research Center (2009). Accessed 5 Oct 2009.

  • Norwood, Z., Archer, DE, Theoboldt, I. (2018) Evaluation of a step-by-step million program deep retrofit to passive house with building integrated PV roof and façade. published in Conference proceedings of the 22nd International Passive House Conference 2018, Passive House Institute, Darmstadt.

  • Passipedia (2018). The new Passive House Classes. Accessed 14 September 2018.

  • Passive House Institute (2017). Criteria for the Passive House, EnerPHit and PHI Low Energy Building Standard, version 9f, Passive House Institute, Darmstadt.

  • Passive House Institute (2018). Certificate, Certified Passive House Component, heat recovery unit Swegon GOLD RX Series, Accessed 14 Sep 2018.

  • Passive House Institute (2020). Passive House Database,, Passive House Institute, Darmstadt.

  • Peper, S., Feist, W. (2009). Gebäudesanierung „Passivhaus im Bestand“ in Ludwigshafen / Mundenheim, Messung und Beurteilung der energetischen Sanierungserfolge, Building modernisation "Existing Passive House stock" in Ludwigshafen / Mundenheim, Measurement and assessment of the success of the energy retrofit, Darmstadt. Download: Accessed 13 March 2020.

  • Peper, S., Feist, W. (2015). Energy efficiency of the Passive House Standard: Expectations confirmed by measurements in practice, Passive House Institute, Darmstadt.

  • Peper, S., Grove-Smith, J., Feist, W. (2009). Sanierung mit Passivhauskomponenten, Messtechnische Untersuchung und Auswertung Tevesstraße Frankfurt a.M., Retrofit using Passive House components, monitoring and evaluation Tevesstrasse Frankfurt/Main, Passive House Institute Darmstadt. Download: Accessed 13 March 2020.

  • Peper, S., Failla, M. C. et al. (2020). Comparison of measured and calculated energy demand and assessment of the results – Innsbruck and Bolzano, Internal draft version of a report within the EU-founded project Sinfonia, Passive House Institute, Darmstadt.

  • Pfluger, R., Peper, S., Kaufmann, B., Feist, W.(2009). Sanierung mit Passivhauskomponenten, Untersuchungen zu den Bestandsgebäuden, Endbericht zum Sanierungsprojekt Tevesstraße Frankfurt am Main, Passivhaus Institut.

  • PHPP (2007). Passive House Planning Package (PHPP), Version 2007. Passive House Institute, Darmstadt.

  • PHPP (2015). Passive House Planning Package (PHPP), Version 9. Passive House Institute, Darmstadt, 1998-2020.

  • Rein, S., Schmidt, C. (2016). Struktur der Bestandsmaßnahmen im Hochbau - Bestandsleistungen im Wohnungs- und Nichtwohnungsbau im Jahr 2014. Structure of measures for existing high-rise building stock - Performance of existing residential and non-residential buildings in the year 2014 (in German); publisher: Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR) of the Federal Office for Building and Regional Planning (BBR); Bonn. Accessed on 23 July 2018.

  • Schaub, M. (2018). Multi-family house in Marienberger Str. 28, Rosenheim. Energy consultancy relating to the heating demand: preliminary balance according to the PHPP Rosenheim, in May 2018.

  • Schnieders, J. (2003). Lüftungsstrategien und Planungshinweise, in Feist, W. (Ed): Arbeitskreis kostengünstige Passivhäuser Phase III, Protokollband Nr. 23 Einfluss der Lüftungsstrategie auf die Schadstoffkonzentration und -ausbreitung im Raum, Passivhaus Institut, Darmstadt. Ventilation strategies and planning advice, In: Ventilation strategy and indoor air pollutant concentration and distribution. In: Protocol Volume No. 23 of the Research Group for Cost-effective Passive Houses (in German), published by Dr. Wolfgang Feist, Passive House Institute, Darmstadt.

  • Schnieders, J. (2005). Innendämmung – Potenziale und Grenzen, In Feist, W. (Ed.): Arbeitskreis kostengünstige Passivhäuser, Protokollband Nr. 32: Faktor 4 auch bei sensiblen Altbauten: Passivhauskomponenten + Innendämmung.Passivhaus Institut, Darmstadt. Interior insulation: potentials and limitations. In: Factor 4 reduction for sensitive retrofits: Passive House components + interior insulation, in: Protocol Volume No. 32 of the Research Group for Cost-effective Passive Houses, (in German) Passive House Institute, Darmstadt.

  • Schnieders, J., Feist, W. (2007). Comfort requirements for Passive House windows, In Feist, W. and Krapmeier, H. (Ed.): Conference Proceedings of the International Passive House Conference 2007 in Bregenz, Passive House Institute, Darmstadt.

  • Schnieders, J., Eian, T., Filippi, M., Florez, J., Kaufmann, B., Pallantzas, S., Paulsen, M., Reyes, E., Wassouf, M., & Yeh, S.-C. (2020). Design and realisation of the Passive House concept in different climate zones. Energy Efficiency, 13, 1561–1604.

    Article  Google Scholar 

  • Schulze Darup, B. (Ed.) (2005). Jean-Paul-Platz 4 in Nürnberg – energetische Gebäudesanierung mit Faktor 10. Jean-Paul-Platz 4 in Nuremberg – Factor 10 energy-relevant building modernisation, Final Report based on the expert report commissioned by the WBG Nürnberg (in German).

  • Schulze-Darup, B. (2003). Praxisbeispiel: Modernisierung Mehrfamilienhaus Jean-Paul-Platz 4, Nürnberg. In: Feist, W. (Ed.): Arbeitskreis kostengünstige Passivhäuser, Protokollband Nr. 24: Einsatz von Passivhaustechnologien bei der Altbau-Modernisierung. Passivhaus Institut, Darmstadt. In: Research Group Cost-efficient Passive Houses, Volume 24: Use of Passive House technologies for refurbishments. Passive House Institute, Darmstadt, (in German).

  • Sedlbauer, K (2001). Vorhersage von Schimmelpilzbildung auf und in Bauteilen. Prediction of mould growth on and in construction elements (in German). PhD thesis, building physics, Fakultät für Bauingenieur und Vermessungswesen der Universität Stuttgart, 2001.

  • Sedlbauer, K.; Gabrio, Th.; Krus, M.(2002). Schimmelpilze – Gesundheitsgefährdung und Vorhersage; Gesundheitsingenieur 123 (2002), Volume 6, p. 285ff.

  • Selling, H (2011). Vi har satsat mer än Sköns Bostäder (Interview) in: Bofast magazine 2011-06, published 1st December 2011, p. 28.

  • SINFONIA (2018)., Accessed 19 Dec 2018.

  • Ürge-Vorsatz, D., Eyre, N., Graham ,P., Harvey, D., Hertwich, E., Jiang, Y., Kornevall. C., Majumdar, M., McMahon, J.E., Mirasgedis, S., et al. (2012). Energy end-use: Buildings. In Global Energy Assessment — Towards a Sustainable Future. Edited by Johansson TB, Nakicenovic N, Patwardhan A, Gomez-Echeverri L. Cambridge University Press; 2012:649-760.

  • Vallentin, R. (2011). Energieeffizienter Städtebau mit Passivhäusern - Begründung belastbarer Klimaschutzstandards im Wohnungsbau 2011 Dissertation Cuvillier Verlag, Göttingen, 2011, 702 S.

  • Vásquez, F., Løvik, A. N., Sandbert, H., Nina, M., & Daniel, B. (2016). Dynamic type-cohort-time approach for the analysis of energy reductions strategies in the building stock. Energy and Buildings, 111, 37–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zeno Bastian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastian, Z., Schnieders, J., Conner, W. et al. Retrofit with Passive House components. Energy Efficiency 15, 10 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: