Abstract
SDG 7, “affordable and clean energy,” is a major challenge for developing countries such as Colombia, where there has been a push to increase coverage with very high costs. This phenomenon has diminished the rational use of energy and energy efficiency, and there is a lack of energy policies for Non-Interconnected Zones (NIZ). This study analyzes the implementation of energy efficiency programs for NIZ communities and proposes investments focused on replacing old/inefficient appliances. It also proposes training the population to improve consumption habits and decrease the demand for electricity and reduce the amount of subsidies the government grants to the NIZ. The model was implemented using the system dynamics methodology with a 20-year time horizon, and the analysis includes load censuses, the amount of subsidies, operating costs, fuel consumption, and CO2 emissions. Simulations show that considerable reductions in the demand for electrical energy can be achieved with a temporary increase in subsidies to implement energy efficiency programs, generating a decrease in the use of diesel fuel and less CO2 emissions. The measures also lead to improving network conditions and reducing operating costs in communities. This model can become a tool for government entities to evaluate new subsidies aimed at reducing operating costs in these areas.
Similar content being viewed by others
Notes
GENSA is the company in charge of the generation actives of Mitú, among other locations of the Colombian NIZ
Industrial users are not as representative in this analysis. The socioeconomic characteristics of the considered areas imply that the industrial sector is not present
The unit cost of energy for the NIZ is made up of three components: generation charge, distribution charge, and commercialization charge. However, the generation charge represents approximately 90% of this unit cost
The polarity of each feedback loop is determined by tracing the effects of each link, starting with any variable, until the loop is closed. If the net effect is to reinforce an initial change in the variable chosen at the starting point, the loop is positive. If an initial change is counteracted, the loop is negative. Lastly, a double hash mark drawn on any arrow linking two variables represents a time delay (Gary & Larsen, 2000). The arrow linking any two variables, x and y, indicates that a causal relationship exists between x and y. The sign at the head of each arrow denotes the nature of the relationship as follows:
$${x}_{\to }^{+}y\Rightarrow\frac{\partial y}{\partial x}>0\;and\; {x}_{\to }^{-}y\Rightarrow\frac{\partial y}{\partial x}<0$$The model presented in this article highlights a directly proportional relationship between the demand for energy, use of diesel fuel, and cost of energy, so that variables defined by the Commission for Electricity and Gas Regulation (CREG) (CREG 091 de 2007—Formula Tarifaria y Costo Unitario de Prestación Del Servicio En ZNI, 2007), such as the cost of the lubricant used by diesel plants, cost of maintenance, or cost of storage, are assumed to be insignificant for the model (in addition, these variables have very small shares compared to others with a broad influence on the model—for reason, they can be omitted)
Current regulations require service providers to report information regarding the operation of the electrical system to Ministry of Mines and Energy, and this is added to the SUI database managed by the Superintendence of Domiciliary Public Services (CREG 091 de 2007—Formula Tarifaria y Costo Unitario de Prestación Del Servicio En ZNI, 2007)
The CNM is a mission area of the IPSE that carries out fundamental activities for monitoring the provision of electric power service in the NIZ, helping the responsible entities to ensure the provision and quality of service to the users of these areas. It also provides timely information on electrical parameters for planning, decision-making and developing structural energy solutions
References
Arias-Gaviria, J., Carvajal-Quintero, S. X., & Arango-Aramburo, S. (2019). Understanding dynamics and policy for renewable energy diffusion in Colombia. Renewable Energy, 139, 1111–1119. https://doi.org/10.1016/j.renene.2019.02.138
Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3), 183–210. https://doi.org/10.1007/BF01305369
Benenson, P., & Systematic, C. (n.d.). Household Appliance Replacement Program - Impact and Tradeoffs.
Buswell, R. A., & Mitchell, V. A. (2015). Identifying the opportunities for ICT based energy demand re- duction in family homes. Eedal, 1, 1–11.
Carvajal, S. X., Arango, S., & Larsen, E. R. (2013). Evaluation of a payments proposal for blackstart services in the Colombian electricity system: A system dynamics approach. International Journal of Electrical Power & Energy Systems, 53, 382–389.
Carvajal-Quintero, S., Arango-Aramburo, S., Arango-Manrique, A., & Younes-Velosa, C. (2011). A study of incentives to increase the use of DG in Colombia based on a system dynamics modeling. Ingenieria e Investigacion, 31(2 SUPPL.), 58–65.
Carvajal-Quintero, S., Arango-Manrique, A., & Arango-Aramburo, S. (2012). Evaluation of incentives for voltage and reactive control using distributed generation in the Colombian electricity system: A system dynamics approach. 2012 IEEE International Symposium on Alternative Energies and Energy Quality, SIFAE 2012 - Conference Proceedings. https://doi.org/10.1109/SIFAE.2012.6478894
De Cobertura, G., Estella, O., & Yaima, R. (2016). Plan Indicativo de Expansión de Cobertura de Energía Eléctrica PIEC 2016–2020.
CREG 091 de 2007 - Formula tarifaria y costo unitario de prestación del servicio en ZNI, Pub. L. No. 091, 38 (2007).
Decreto 2331 de 2007, Pub. L. No. 2331, 2 (2007).
Decreto 2501 de 2007, 2 (2007).
Decreto 3450 de 2008, Pub. L. No. 3450, 3 (2008).
Decreto 3683 de 2003, Pub. L. No. 3683, 13 (2003).
Decreto 895 de 2008, Pub. L. No. 895, 1 (2008).
Dyner, I., Smith, R. A., Peña, G. E., Dyner, I., Smith, R. A., & Pena, G. E. (2016). System Dynamics Modelling for Residential Energy Efficiency Analysis and Management Published by : Palgrave Macmillan Journals on behalf of the Operational Research Society Stable URL : http://www.jstor.org/stable/2584613 Linked references are available o. 46(10), 1163–1173.
Energ, O. D. E., & Habitante, C. P. O. R. (2009). Consumo de energía eléctrica por habitante. Intituto amazónico de investigaciones cientificas SINCHI.
Felipe, J., & Rodas, P. (2015). Análisis de Métodos de Optimización Metaheurística para la Calibración de Modelos en Dinámica de Sistemas. Bogotá: Universidad Nacional de Colombia.
Ford, A. (2001). Waiting for the boom: A simulation study of power plant construction in California. Energy Policy, 29(11), 847–869.
Forrester, J. W. (1997). Industrial dynamics. Journal of the Operational Research Society, 48(10), 1037–1041.
García Franco, Juan Felipe Carvajal Quintero, S. X., & Arango-Aramburo, S. (2018). Planeación de Programas de Uso Racional y Eficiente de la Energía en Redes Aisladas de la Zona No Interconectada : Caso de Estudio. XVI Encuentro Colombiano de Dinamica de Sistemas.
García Arbeláez, C. ., Vallejo, M. ., Higgings, & Escobar, E. M. (2016). El Acuerdo de París. Así actuará Colombia frente al cambio climático. In WWF-Colombia: Vol. 1 ed.
García Franco, J. F., Bedoya Sanchez, S., Arango Lemoine, C., & Carvajal Quintero, S. X. (2018). Análisis de la operación de Sistemas Eléctricos en Redes Aisladas de la Zona No Interconectada Mediante la Implementación de Programas de Uso Racional y Eficiente de la Energía. Primer Encuentro Nacional de Eficiencia Energética En Colombia: El Combustible Limpio Del Futuro.
Gary, S., & Larsen, E. R. (2000). Improving firm performance in out-of-equilibrium, deregulated markets using feedback simulation models. Energy Policy, 28, 845–855. https://doi.org/10.1016/S0301-4215(00)00059-8
GENSA, & Universidad Nacional de Colombia. (2016). CARACTERIZACIÓN DE LA DEMANDA ELÉCTRICA EN EL MUNICIPIO DE MITÚ – VAUPÉS ZONA NO INTERCONECTADA.
Gómez, J. S., Carvajal, S. X., & Arango, A. (2015). Demand response programs for residential sector in Colombia: Systems thinking approach. Energética, 9833, 73–83.
Gopal, A. R., Leventis, G., Phadke, A., & de la Rue du Can, S. . (2014). Self-financed efficiency incentives: Case study of Mexico. Energy Efficiency, 7(5), 865–877. https://doi.org/10.1007/s12053-014-9263-9
Grisales, S. (2017). Análisis de la viabilidad técnico – económica de la inclusión de energía renovable en una de las principales localidades de las ZNI. Bogotá: Universidad Nacional de Colombia.
IPSE. (n.d.-a). Centro Nacional de Monitoreo.
IPSE. (n.d.-b). Centro Nacional de Monitoreo. Retrieved April 11, 2018, from http://190.216.196.84/cnm/
Jara, N., Isaza, C., Gallón, L., & Giraldo, D. P. (2015). Modelo dinámico para el estudio de la aplicación del plan de renovación de refrigeradores domésticos en Colombia. October.
Ley 143 de 1994, (1994).
Law 1715/2014. Congreso de la República de Colombia, Ley 1715 de 2014, 2014. Bogota D.C., Colombia http://www.upme.gov.co/normatividad/nacional/2014/ley_1715_2014.pdf
Ley 697 de 2001, Pub. L. No. 697, 5 (2001).
López García, D. (2019). Caracterización de un esquema remunerativo para la participación de la demanda en la prestación del servicio complementario de control de frecuencia en el mercado eléctrico colombiano. Master Thesis, Universidad Nacional de Colombia https://www.bdigital.unal.edu.co/73363/1/1053845817_2019.pdf
Manrique, A. A., Manrique, A. A., Quintero, S. X. C., & Velosa, C. Y. (2013). Economic mechanisms to promote distributed resource supply in a Colombian microgrid: System dynamics approach. Simposio Internacional Sobre La Calidad de La Energía Eléctrica - SICEL, 7(0). https://revistas.unal.edu.co/index.php/SICEL/article/view/38586
Manrique, A. A. (2010). Caracterización de un esquema remunerativo de control e tensión en e mercado eléctrico colombiano. ???
Manrique, A. A. (2017). Evaluación Técnica y de Mercado de la Operación de una Microrred en Modo Aislado dentro de un Sistema Eléctrico de Potencia con Ambiente Desregulado [Universidad Nacional de Colombia Facultad]. http://bdigital.unal.edu.co/59377/1/1053769777.2017.pdf
Marín Jiménez, J. D., & Carvajal Quintero, S. X. (2017). Modelo híbrido de simulación para la implementación del servicio complementario de capacidad de operación por Islas utilizando dinámica de sistemas y aprendizaje automático. Espacios, 38(53), 1.
Marín-Jiménez, Juan D., Carvajal-Quintero, S. X., & Guerrero, J. M. (2018). Island operation capability in the Colombian electrical market: A promising ancillary service of distributed energy resources. TecnoLógicas, 21(42), 169–185. https://doi.org/10.22430/22565337.786
Marín-Jiménez, J. D., Carvajal-Quintero, S. X., & Arango-Aramburo, S. (2019). Implementation proposal for an ancillary service for Island Operation Capability in Colombia: A system dynamics approach. International Journal of Electrical Power and Energy Systems, 113, 288–297. https://doi.org/10.1016/j.ijepes.2019.05.035
Ministerio de Minas y Energía. (2004). Decreto 1591 de 2004.
Ministerio de Minas y Energía-UPME. (2014). Guía para el consumo consciente, racional y eficiente de la energía. SECTOR HOTELERO, COMERCIAL E INSTITUCIONAL. http://www.si3ea.gov.co/LinkClick.aspx?fileticket=VaQh9l97ubc=&tabid=90&mid=449&language=en-US
Morecroft, J. (2007). Strategic Modelling and Business Dynamics: A Feedback Systems View. Berlin: John Wiley & Sons.
Nie, H., Zhou, T., Lu, H., & Huang, S. (2021). Evaluation of the efficiency of Chinese energy-saving household appliance subsidy policy: An economic benefit perspective. Energy Policy, 149(2020), 112059. https://doi.org/10.1016/j.enpol.2020.112059
Omar Prias Caicedo. (2009). Consultoría para la recopilación de información, definición de lineamientos y prioridades como apoyo a la formulación del PROURE.
Parra, J. F., Jaramillo, P., & Arango-Aramburo, S. (2018). Metaheuristic optimization methods for calibration of system dynamics models. Journal of Simulation, 12(2), 190–209. https://doi.org/10.1080/17477778.2018.1467850
Unidad de Planeación Minero Energética. (n.d.). Resolucion UPME 355 DE 2004.
Unidad de Planeación Minero Energética - UPME. (n.d.). Plan Indicativo de Expansión de Cobertura del Servicio de Energía Eléctrica 2002–2005.
Powersim Studio | Powersim Software. (n.d.).
Prías, O., & Montaña, D. (2014). Modelo Estratégico de Innovación para impulsar la Gestión Energética en Colombia. Revista Energética, 44, 61–68.
Qudrat-Ullah, H., & Seong, B. S. (2010). How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energy Policy, 38(5), 2216–2224. https://doi.org/10.1016/j.enpol.2009.12.009
Quintero, S. X. C., & Aramburo, S. A. (2011). Simulación para la evaluación de una propuesta de remuneración del servicio de arranque autónomo en Colombia. Revista Facultad De Ingenieria, 59, 267–276.
Resolución 180609 de 2006, Pub. L. No. 180609, 4 (2006).
Resolución 180648 de 2008.
Resolución 180660 de 2009, Pub. L. No. 180660, 2 255 (2009).
Resolución 180919 de 2010, Pub. L. No. 180919, 12 (2010).
Resolución 181891 de 2008.
Resolución 91874 de 2012.
Sargent, R. G. (2013). Verification and validation of simulation models. Journal of Simulation, 7(1), 12–24. https://doi.org/10.1057/jos.2012.20
Superintendencia de Servicios Públicos Domiciliarios. (2017). ZONAS NO INTERCONECTADAS -ZNI Diagnóstico de la prestación del servicio de energía eléctrica 2017.
Superintendencia de Servicios Públicos Domiciliarios. (n.d.). Sistema Único de Información de Servicios Públicos :.
Spyridaki, N. A., Stavrakas, V., Dendramis, Y., & Flamos, A. (2020). Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector. Energy Policy, 140(March), 111413. https://doi.org/10.1016/j.enpol.2020.111413
Sterman, J. D. (2000). Systems Thinking and Modeling for a Complex World (Issue December 1999).
Unidad Nacional para la Gestión del Riesgo de Desastres - UNGRD. (2015). PROGRAMA DE GESTIÓN PARA EL USO EFICIENTE DE ENERGIA.
United Nations. (n.d.). Objetivos y metas de desarrollo sostenible - Desarrollo Sostenible. Retrieved February 26, 2020, from https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/
UPME. (2014). Plan Indicativo de Expansión de Cobertura de Energía Eléctrica 2013–2017. In UPME, Colombia.
UPME. (2017). Plan De Acción Indicativo De Eficiencia Energética 2017 - 2022. 157.
Valencia, A., Obando, L., De Minas, F., & Medellín, S. (2017). Aproximaciones a la validación en dinámica de sistemas. Aproximaciones a La Validación En Dinámica de Sistemas, 6(2), 61–68. https://doi.org/10.18566/puente.v6n2.a06
Ximena, S., Quintero, C., David, J., & Jiménez, M. (2013). The impact of distributed generation on the colombian electrical power system: A dynamic-system approach. Tecnura, 17(35), 77–89.
Ximena, S., & Quintero, C. (2013). Análisis de servicios complementarios en sistemas de potencia eléctricos en ambientes de mercados [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/11863/1/7907502.2013.pdf
Acknowledgements
We acknowledge the valuable comments of anonymous reviewers incorporated in the manuscript.
Funding
The research for this work was supported by Universidad Nacional de Colombia with the project entitled “Characterization of the Demand for Electric Energy for the Development of Energy Efficiency Programs in the Municipality of Mitú,” code 40231, developed by the Environmental Energy and Education Policy research group—E3P and the company Gestión Energética SA—GENSA. We also received support given to the project “Modeling and Simulation of Incentives for Energy Efficiency in Non-Interconnected Zones,” code 47501 financed by the same institution.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1
Appendix 2 Information founded in the fieldwork at Mitú
Durante las visitas realizadas al municipio de Mitú, se pudieron evidenciar diferentes características que los hace tener un elevado consumo de electricidad, por ejemplo, la presencia de estufas eléctricas que, se justifica en que el gas es demasiado costoso en la zona debido a la logística de transporte de este, mientras que la electricidad tiene un cobro fijo mensual independiente de su uso.
Durante los recorridos por la cabecera municipal, fue evidente el hecho de que las luminarias de alumbrado público permanecen prendidas las 24 horas del día, por lo que se tiene un gasto innecesario de energía el alumbrado público. Además, es común ver que en las casas aún se utilizan bombillas incandescentes lo que aumenta el consumo considerablemente.
Durante las visitas realizadas se realizaron jornadas de capacitación para concientizar a las personas sobre el uso adecuado de las redes, los buenos hábitos de consumo y las tecnologías más eficientes. Una de las capacitaciones estuvo enfocada en mostrar diferentes tipos de luminarias resaltando las diferencias entre consumo, durabilidad y costo.
Appendix 3
Rights and permissions
About this article
Cite this article
García-Franco, J.F., Carvajal-Quintero, S.X. & Arango-Aramburo, S. Rational and efficient energy use programs in Non-Interconnected Zones in Colombia: a system dynamics analysis. Energy Efficiency 14, 78 (2021). https://doi.org/10.1007/s12053-021-09989-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12053-021-09989-2