Abstract
This work presents a techno-economic evaluation of the implementation of a cogeneration system in the textile sector. The study was based on energy analysis for the survey of energy data, energy audit in the industrial plant, and also, an analysis of technical and economic feasibility, based on the parameters of net present value (NPV), internal rate of return (IRR), and time of return on investment (payback). The study was based on the use of single-effect absorption chillers, with the pair lithium bromide-water (LiBr/H2O) as the working fluid. Scenario studies were created to verify the feasibility of cogeneration in terms of the current system configuration. The sensitivity analysis of the scenarios studied depending on the exchange rate from Brazilian Real to US Dollar, the natural gas tariff, the investment of time, and interest rate financing allowed to find a hypothetical scenario for natural gas rates between 0.05 and 0.14US$/m3 and an interest rate set at 3% per year, where the proposal for full cogeneration (production of electricity and heat) was quite favorable, even for the high investments of the proposed cogeneration plant.
Similar content being viewed by others
Notes
Brazilian economy’s basic interest rate
Abbreviations
- C1-C4:
-
Starch Cookers (1–4)
- COPERGÁS:
-
Companhia Pernambucana de Gás (Pernambuco Gas Company)
- IES:
-
Instituto de Energias Sustentáveis (Institute of Sustainable Energies)
- IR1–IR3:
-
Steam ironers (1–3)
- O&M:
-
Operation and maintenance
- p.a:
-
Per annum
- RECOGÁS:
-
Rede Cooperativa Norte-Nordeste do Gás Natural (North-Northeast Natural Gas Cooperative Network)
- SELIC:
-
Sistema Especial de Liquidação e Custódia (Special System of Settlement and Custody, a basic interest rate of the Brazilian economy)
- TRNSYS:
-
Transient System Simulation Tool
- UFPB:
-
Universidade Federal da Paraíba (Federal University of Paraíba)
- CF:
-
Cash flow, $
- COP:
-
Coefficient of Performance, –
- Cost:
-
Costs, $
- i :
-
Interest rate, %
- IRR:
-
Internal rate of return, %
- LCV:
-
Lower calorific value, kJ/kg
- NPV:
-
Net present value, $
- \( \dot{m} \) :
-
Mass flow rate, kg/s
- \( \dot{Q} \) :
-
Heat flow, kW
- \( \dot{V} \) :
-
Volumetric flow rate, m3/s
- 1–19:
-
Thermal energy circuit of the textile company
- elect:
-
Electrical
- eva:
-
Evaporator
- fuel:
-
Fuel
- gen:
-
Generator
- ng:
-
Natural gas
References
Ahn, H., Freihaut, J. D., & Rim, D. (2019). Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs. Energy, 169, 420–432. https://doi.org/10.1016/j.energy.2018.11.126.
Alcântara, S. C. S., Ochoa, A. A. V., Da Costa, J. A. P., Michima, P. S. A., & Silva, H. C. N. (2019). Natural gas based trigeneration system proposal to an ice cream factory: An energetic and economic assessment. Energy Conversion and Management, 197, 111860. https://doi.org/10.1016/j.enconman.2019.111860.
Alexis, G. K., & Liakos, P. (2013). A case study of a cogeneration system for a hospital in Greece. Economic and environmental impacts. Applied Thermal Engineering, 54(2), 488–496. https://doi.org/10.1016/j.applthermaleng.2013.02.019.
Andiappan, V. (2017). State-of-the-art review of mathematical optimisation approaches for synthesis of energy systems. Process Integration and Optimization for Sustainability, 1(3), 165–188. https://doi.org/10.1007/s41660-017-0013-2.
Angrisani, G., Akisawa, A., Marrasso, E., Roselli, C., & Sasso, M. (2016). Performance assessment of cogeneration and trigeneration systems for small scale applications. Energy Conversion and Management, 125, 194–208. https://doi.org/10.1016/j.enconman.2016.03.092.
Arshad, M., & Ahmed, S. (2016). Cogeneration through bagasse: A renewable strategy to meet the future energy needs. Renewable and Sustainable Energy Reviews, 54(1), 732–737. https://doi.org/10.1016/j.rser.2015.10.145.
Askari, I., Sadegh, M., & Ameri, M. (2015). Energy management and economics of a trigeneration system considering the effect of solar PV, solar collector and fuel price. Energy for Sustainable Development, 26(1), 43–55. https://doi.org/10.1016/j.esd.2015.03.002.
Badami, M., Camillieri, F., Portoraro, A., & Vigliani, E. (2014). Energetic and economic assessment of cogeneration plants: A comparative design and experimental condition study. Energy, 71, 255–262.
Badami, M., Modica, S., & Portoraro, A. (2017). A biofuel-based cogeneration plant in a natural gas expansion system: An energetic and economic assessment. Applied Thermal Engineering, 118, 52–61. https://doi.org/10.1016/j.applthermaleng.2017.02.062.
Basrawi, F., Ibrahim, T. K., Habib, K., Yamada, T., & Idris, D. M. N. D. (2017). Techno-economic performance of biogas-fueled micro gas turbine cogeneration systems in sewage treatment plants: Effect of prime mover generation capacity. Energy, 124, 238–248. https://doi.org/10.1016/j.energy.2017.02.066.
Broniszewski, M., & Werle, S. (2020). CO2 reduction methods and evaluation of proposed energy efficiency improvements in Poland’s large industrial plant. Energy, 202(1), 117704. https://doi.org/10.1016/j.energy.2020.117704.
Caglayan, H., & Caliskan, H. (2018). Energy, exergy and sustainability assessments of a cogeneration system for ceramic industry. Applied Thermal Engineering, 136, 504–515. https://doi.org/10.1016/j.applthermaleng.2018.02.064.
Carragher, M., De Rosa, M., Kathirgamanathan, A., & Finn, D. P. (2019). Investment analysis of gas-turbine combined heat and power systems for commercial buildings under different climatic and market scenarios. Energy Conversion and Management, 183, 35–49. https://doi.org/10.1016/j.enconman.2018.12.086.
Cavalcante, A. W. A., Dos Santos, C. A. C., & Ochoa, A. A. V. (2017). Thermodynamic analysis of an energy high performance system. IEEE Latin America Transactions, 15, 454–461. https://doi.org/10.1109/TLA.2017.7867595.
Cavalcanti, E. J. C. (2017). Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system. Renewable and Sustainable Energy Reviews, 67(1), 507–519. https://doi.org/10.1016/j.rser.2016.09.017.
Chen, Y., Xu, D., Chen, Z., Gao, X., & Han, W. (2019). Energetic and exergetic analysis of a solar-assisted combined power and cooling (SCPC) system with two different cooling temperature levels. Energy Conversion and Management, 182, 497–507. https://doi.org/10.1016/j.enconman.2018.12.069.
Colorado, D., & Rivera, W. (2015). Performance comparison between a conventional vapor compression and compression-absorption single-stage and double-stage systems used for refrigeration. Applied Thermal Engineering, 87(1), 273–285. https://doi.org/10.1016/j.applthermaleng.2015.05.029.
de Faria, D. M. C., & Ramos, D. S. (2016). Economic regulation of brownfield projects: The Brazilian hydro power plants case. Ieee Latin America Transactions, 14(16), 4733–4740. https://doi.org/10.1109/TLA.2016.7817004.
De Souza, T. A. Z., Coronado, C. J. R., Silveira, J. L., & Pinto, G. M. (2021). Economic assessment of hydrogen and electricity cogeneration through steam reforming-SOFC system in the Brazilian biodiesel industry. Journal of Cleaner Production, 279, 123814.
Ehyaei, M. A., Ahmadi, A., Assad, M. E. H., & Rosen, M. A. (2020). Investigation of an integrated system combining an Organic Rankine Cycle and absorption chiller driven by geothermal energy: Energy, exergy, and economic analyses and optimization. Journal of Cleaner Production, 258, 120780. https://doi.org/10.1016/j.jclepro.2020.120780.
Eveloy, V., Rodgers, P., & Popli, S. (2014). Trigeneration scheme for a natural gas liquids extraction plant in the Middle East. Energy Conversion and Management, 78(1), 204–218. https://doi.org/10.1016/j.enconman.2013.10.009.
Ferreira, A. C., Nunes, M. L., Teixeira, J. C. F., Martins, L. A. S. B., & Teixeira, S. F. C. F. (2016). Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes. Energy, 111(1), 1–17. https://doi.org/10.1016/j.energy.2016.05.091.
Fonseca, G. C., Costa, C. B. B., & Cruz, A. J. G. (2020). Economic analysis of a second-generation ethanol and electricity biorefinery using superstructural optimization. Energy, 204, 117988.
Fuentes-Cortés, L. F., Santibañez-Aguilar, J. E., & Ponce-Ortega, J. M. (2016). Optimal design of residential cogeneration systems under uncertainty. Computers & Chemical Engineering, 88, 86–102. https://doi.org/10.1016/j.compchemeng.2016.02.008.
Gambini, M., & Vellini, M. (2015). High efficiency cogeneration: Electricity from cogeneration in CHP plants. Energy Procedia, 81, 430–439. https://doi.org/10.1016/j.egypro.2015.12.117.
Gholizadeh, T., Vajdi, M., & Mohammadkhani, F. (2019). Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas. Energy Conversion and Management, 181, 463–475. https://doi.org/10.1016/j.enconman.2018.12.011.
Gogoi, T. K., & Talukdar, K. (2014). Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system. Energy Conversion and Management, 83(1), 119–132. https://doi.org/10.1016/j.enconman.2014.03.060.
Gurturk, M., & Oztop, H. F. (2016). Exergy analysis of a circulating fluidized bed boiler cogeneration power plant. Energy Conversion and Management, 120, 346–357. https://doi.org/10.1016/j.enconman.2016.05.006.
Hanak, D. P., & Manovic, V. (2018). Combined heat and power generation with lime production for direct air capture. Energy Conversion and Management, 160, 455–466. https://doi.org/10.1016/j.enconman.2018.01.037.
Inan, A., Izgi, E., & Selim, A. Y. (2009). Modelling of the change in national exchange rate model depending on the economic parameters of a natural gas cogeneration system: Turkey case. Energy Conversion and Management, 50, 1049–1055.
Isa, N. M., Tan, C. W., & Yatim, A. H. M. (2018). A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system. Renewable and Sustainable Energy Reviews, 81, 2236–2263. https://doi.org/10.1016/j.rser.2017.06.034.
Jaber, H., Ramadan, M., & Khaled, M. (2018). Domestic thermoelectric cogeneration system optimization analysis, energy consumption and CO2 emissions reduction. Applied Thermal Engineering, 130, 279–295. https://doi.org/10.1016/j.applthermaleng.2017.10.148.
Johar, D. K., Sharma, D., & Soni, S. L. (2020). Comparative studies on micro cogeneration, micro cogeneration with thermal energy storage and micro trigeneration with thermal energy storage system using same power plant. Energy Conversion and Management, 220, 113082. https://doi.org/10.1016/j.enconman.2020.113082.
JOHNSON CONTROLS. (2019). Buildings. Available in: https://www.york.com/Commercial-Equipment/Chilled-Water-Systems/Absorption-Chillers. Access in January 05, 2019.
Karana, D. R., & Sahoo, R. R. (2020). Thermal, environmental and economic analysis of a new thermoelectric cogeneration system coupled with a diesel electricity generator. Sustainable Energy Technologies and Assessments, 40, 100742.
Kordlar, M. A., & Mahmoudi, S. M. S. (2017). Exergeoconomic analysis and optimization of a novel cogeneration system producing power and refrigeration. Energy Conversion and Management, 134, 208–220. https://doi.org/10.1016/j.enconman.2016.12.007.
Król, J., & OcŁOŃ, P. (2019). Sensitivity analysis of hybrid combined heat and power plant on fuel and CO2 emission allowances price change. Energy Conversion and Management, 196, 127–148.
Leite, C. A. A. F.. (2015). Estudo e Avaliação Termoeconômica da Aplicação de Cogeração na Indústria Têxtil. Dissertation (Master in Energy Technology) - Federal University of Pernambuco, Recife.
Li, Z. X., Ehyaei, M. A., Ahmadi, A., Jamali, D. H., Kumar, R., & Abanades, S. (2020). Energy, exergy and economic analyses of new coal-fired cogeneration hybrid plant with wind energy resource. Journal of Cleaner Production, 269, 122331. https://doi.org/10.1016/j.jclepro.2020.122331.
Lima, K. C., Caldas, A. M. A., dos Santos, C. A. C., Ochoa, A. A. V., & Dutra, J. C. C. (2016). Flow control for absorption chillers using the par LiBr/H2O driven in recirculation pumps. IEEE Latin America Transactions, 14(4), 1624–1629. https://doi.org/10.1109/TLA.2016.7483492.
Molina, D. L., Vidal, J. R., & González, F. (2017). Mathematical modeling based on exergy analysis for a bagasse boiler. IEEE Latin America Transactions, 15(1), 65–74. https://doi.org/10.1109/TLA.2017.7827889.
Morais, P. H. S., Lodi, A., Aoki, A. C., & Modesto, M. (2020). Energy, exergetic and economic analyses of a combined solar-biomass- ORC cooling cogeneration systems for a Brazilian small plant. Renewable Energy, 157, 1131e1147.
Movahed, P., & Avami, A. (2020). Techno-economic optimization of biogas-fueled micro gas turbine cogeneration systems in sewage treatment plant. Energy Conversion and Management, 218, 112965.
Ochoa, A. A. V., Dutra, J. C. C., Henríquez, J. R. G., & Rohatgi, J. (2014a). Energetic and exergetic study of a 10RT absorption chiller integrated into a microgeneration system. Energy Conversion and Management, 88, 545–553. https://doi.org/10.1016/j.enconman.2014.08.064.
Ochoa, A. A. V., Dutra, J. C. C., & Henríquez, J. R. G. (2014b). Energy and exergy analysis of the performance of 10 TR lithium bromide/water absorption chiller. Revista Técnica de laFacultad de Ingeniería. Universidad del Zulia, 37(1), 38–47.
Ochoa, A. A. V., Diniz, H., Santana, W., Silva, P., & Ochoa, L. R. C. (2015). Aplicação de uma Fonte Alternativa de Energia Termelétrica a Gás Natural visando Reduzir o Custo com Energia Elétrica em um Edifício Comercial. Holos, 1(1), 72–86. https://doi.org/10.15628/holos.2015.2362.
Ochoa, A. A. V., Dutra, J. C. C., Henríquez, J. R. G., & dos Santos, C. A. C. (2016a). Dynamic study of a single effect absorption chiller using the pair LiBr/H2O. Energy Conversion and Management, 108(1), 30–42. https://doi.org/10.1016/j.enconman.2015.11.009.
Ochoa, A. A. V., Dutra, J. C. C., Henríquez, J. R. G., & dos Santos, C. A. C. (2016b). Techno-economic and Exergoeconomic Analysis of micro cogeneration system for a residential use. Acta Technology Scientiarum, 38(3), 327–338. https://doi.org/10.4025/actascitechnol.v38i3.28752.
Ochoa, A. A. V., Dutra, J. C. C., Henríquez, J. R. G., dos Santos, C. A. C., & Rohatgi, J. (2017). The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O. Energy Conversion and Management, 136(1), 270–282. https://doi.org/10.1016/j.enconman.2017.01.020.
Omar, A., Saghafifar, M., Mohammadi, K., Alashkar, A., & Gadalla, M. (2019). A review of unconventional bottoming cycles for waste heat recovery: Part II – Applications. Energy Conversion and Management, 180, 559–583. https://doi.org/10.1016/j.enconman.2018.10.088.
Pérez, Á. A. D., Palacio, J. C. E., Venturini, O. J., Reyes, A. M. M., Orozco, D. J. R., Lora, E. E. S., & Del Olmo, O. A. A. (2018). Thermodynamic and economic evaluation of reheat and regeneration alternatives in cogeneration systems of the Brazilian sugarcane and alcohol sector. Energy, 152, 247–262. https://doi.org/10.1016/j.energy.2018.03.106.
Perez, A. A. D., Palacio, J. C. E., Venturini, O. J., Reyes, A. M. M., Orozco, D. J. R., Lora, E. E. S., & Olmo, O. A. A. (2018). Thermodynamic and economic evaluation of reheat and regeneration alternatives in cogeneration systems of the Brazilian sugarcane and alcohol sector. Energy, 152, 247–262.
Pina, E. A., Lozano, M. A., & Serra, L. M. (2018). Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage. Energy, 153, 170–184. https://doi.org/10.1016/j.energy.2018.04.012.
Ramos, L. F., Krüger, C., & Farret, F. A. (2016). Economical feasibility of alternative sources as secondary means for electricity generation in Brazilian gas stations. IEEE Latin America Transactions, 14(4), 1717–1723. https://doi.org/10.1109/TLA.2016.7483506.
Shabbir, I., & Mirzaeian, M. (2016). Feasibility analysis of different cogeneration systems for a paper mill to improve its energy efficiency. International Journal of Hydrogen Energy, 41(37), 16535–16548. https://doi.org/10.1016/j.ijhydene.2016.05.215.
Shabbir, I., & Mirzaeian, M. (2017). Carbon emissions reduction potentials in pulp and paper mills by applying cogeneration technologies. Energy Procedia, 112, 142–149. https://doi.org/10.1016/j.egypro.2017.03.1075.
Silva, H. C. N., Dutra, J. C. C., Costa, J. A. P., Ochoa, A. A. V., Dos Santos, C. A. C., & Araújo, M. M. D. (2019). Modeling and simulation of cogeneration systems for buildings on a university campus in Northeast Brazil – A case study. Energy Conversion and Management, 186, 334–348. https://doi.org/10.1016/j.enconman.2019.02.062.
Souza, R. J., Dos Santos, C. A. C., Ochoa, A. A. V., Marques, A. S., Neto, J. L. M., & Michima, P. S. A. (2020). Proposal and 3E (energy, exergy, and exergoeconomic) assessment of a cogeneration system using an organic Rankine cycle and an Absorption Refrigeration System in the Northeast Brazil: Thermodynamic investigation of a facility case study. Energy Conversion and Management, 217, 113002. https://doi.org/10.1016/j.enconman.2020.113002.
Takigawa, F. Y. K., Fernandes, R. C., Aranha Neto, E. A. C., Tenfen, D., & Sica, E. T. (2016). Energy management by the consumer with photovoltaic generation: Brazilian market. IEEE Latin America Transactions, 14(5), 2226–2232. https://doi.org/10.1109/TLA.2016.7530417.
Valenzuela, C., Felbol, C., Quiñones, G., Valenzuela, L., Moya, S. L., & Escobar, R. A. (2018). Modeling of a small parabolic trough plant based in direct steam generation for cogeneration in the Chilean industrial sector. Energy Conversion and Management, 174, 88–100. https://doi.org/10.1016/j.enconman.2018.08.026.
Vandewalle, J., & D'haeseleer, W. (2014). The impact of small scale cogeneration on the gas demand at distribution level. Energy Conversion and Management, 78(1), 137–150. https://doi.org/10.1016/j.enconman.2013.10.005.
Varma, G. V. P., & Srinivas, T. (2015). Design and analysis of a cogeneration plant using heat recovery of a cement factory. Case studies in thermal engineering, 5(1), 24–31. https://doi.org/10.1016/j.csite.2014.12.002.
Viklund, S. B., & Johansson, M. T. (2014). Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction. Energy Conversion and Management, 77, 369–379. https://doi.org/10.1016/j.enconman.2013.09.052.
Viklund, S. B., & Karlsson, M. (2015). Industrial excess heat use: Systems analysis and CO2 emissions reduction. Applied Energy, 152, 189–197. https://doi.org/10.1016/j.apenergy.2014.12.023.
Zheng, C. Y., Wu, J. Y., Zhai, X. Q., Yang, G., & Wang, R. Z. (2016). Experimental and modeling investigation of an ICE (internal combustion engine) based micro-cogeneration device considering overheat protection controls. Energy, 101(1), 447–461. https://doi.org/10.1016/j.energy.2016.02.030.
Acknowledgments
The first author thanks Professor Pedro Anselmo Filho for his support and help during the preparation of the master’s thesis, as well as the University of Pernambuco and also the CAPES. The third author also thanks the CNPq for the scholarships and Productivity grant no. 309154/2019-7 and the IFPE for its financial support throughout the Edital 10/2019/Propesq.
Funding
The authors thank FACEPE/Cnpq for financial support for research project APQ-0151-3.05/14 and the CNPq for financial support for the research project - Universal 402323/2016-5.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Leite, C.A.A.F., Alcântara, S.C.S., Ochoa, A.A.V. et al. Natural gas based cogeneration system proposal to a textile industry: a financial assessment. Energy Efficiency 14, 20 (2021). https://doi.org/10.1007/s12053-021-09927-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12053-021-09927-2