Abstract
This paper presents a new energy efficiency-based classification approach for street lighting. This approach considers the improvement of visual performance by correcting the standard photometry system (photopic) by the mesopic system, recommended within the CIE 191:2010 and the operational hours of the lighting system, aspects that are usually disregarded by the most-used energy classifications. The method proposed here is based on the value function concept, which allows standardizing an energy performance indicator, representing a satisfaction degree. To validate the approach proposed, a case study in 13 representative streets of the Eixample District of Barcelona is carried out, comparing results with those obtained by other three energy efficiency classifications used in Spain, Netherlands, and Italy. These results derived from the application of the method supports decision-making when using different energy classifications and straightforward to quantify potential energy savings.
Similar content being viewed by others
Notes
Conversion factor used: 1 kWh electricity = 241 g CO2 (OCCC 2020).
References
Alarcon, B., Aguado, A., Manga, R., & Josa, A. (2011). A value function for assessing sustainability: application to industrial buildings. Sustainability, 3(1), 35–50. https://doi.org/10.3390/su3010035.
Barcelona City Council. (2018). Comprehensive lighting renovation plan 2018-2020. Ecology, Urban Planning, Infrastructures and Mobility. https://ajuntament.barcelona.cat/ecologiaurbana/en/what-we-do-and-why/quality-public-space/lighting-Master-Plan. Accessed 1 March 2018
Barcelona City Council. (2020). Contracte de Conservació de les instal·lacions d’enllumenat públic de Barcelona, 2022-2024. GENBA. Direcció d’Energía i Qualitat Ambiental. https://contractaciopublica.gencat.cat/ecofin_pscp/AppJava/portalfileretrieving.pscp?reqCode=retrieveFile&docHash=a7614d41c3053f21de118f28813afb64&fileId=66019606&capId=15937468&idTS=66018009. Accessed 2 September 2020
Beccali, M., Bonomolo, M., Lo Brano, V., Ciulla, G., Di Dio, V., Massaro, F., & Favuzza, S. (2019). Energy saving and user satisfaction for a new advanced public lighting system. Energy Conversion and Management, 195, 943–957. https://doi.org/10.1016/j.enconman.2019.05.070.
BRE. (2011). Green Public procurement street lighting and traffic lights technical background report. Brussels.
Carli, R., Dotoli, M., & Cianci, E. (2017). An optimization tool for energy efficiency of street lighting systems in smart cities. IFAC PapersOnLine, 50(1), 14460–14464.
Carli, R., Dotoli, M., & Pellegrino, R. (2018). A decision-making tool for energy efficiency optimization of street lighting. Computers and Operations Research, 96, 223–235. https://doi.org/10.1016/j.cor.2017.11.016.
Cartelle Barros, J. J., Lara Coira, M., de la Cruz López, M. P., & del Caño Gochi, A. (2015). Assessing the global sustainability of different electricity generation systems. Energy, 89, 473–489. https://doi.org/10.1016/j.energy.2015.05.110.
CEI. (2017). Posibles riesgos de la iluminación LED. Conclusiones del Grupo de trabajo del Comité Español de Iluminación. https://www.ceisp.com/fileadmin/user_upload/Riesgos-iluminacion-led.pdf. Accessed 2 November 2018
Commission Internationale de L’Eclairage. (2010). Recommended system for Mesopic photometry based on visual performance. CIE 191:2010. Vienna, Austria.
Davies, T. W., & Smyth, T. (2018). Why artificial light at night should be a focus for global change research in the 21st century. Global Change Biology, 24(3), 872–882. https://doi.org/10.1111/gcb.13927.
de la Fuente, A., Blanco, A., Armengou, J., & Aguado, A. (2017). Sustainability based-approach to determine the concrete type and reinforcement configuration of TBM tunnels linings. Case study: extension line to Barcelona Airport T1. Tunnelling and Underground Space Technology, 61, 179–188. https://doi.org/10.1016/j.tust.2016.10.008.
Del Caño, A., Pilar De La Cruz, M., Cartelle, J. J., & Lara, M. (2015). Conceptual framework for an integrated method to optimize sustainability of engineering systems. Journal of Energy and Power Engineering, 9, 608–615. https://doi.org/10.17265/1934-8975/2015.07.002.
Djuretic, A., & Kostic, M. (2018). Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting. Energy, 157, 367–378. https://doi.org/10.1016/J.ENERGY.2018.05.179.
Doulos, L. T., Sioutis, I., Kontaxis, P., Zissis, G., & Faidas, K. (2019). A decision support system for assessment of street lighting tenders based on energy performance indicators and environmental criteria: overview, methodology and case study. Sustainable Cities and Society, 51(101759), 101759. https://doi.org/10.1016/j.scs.2019.101759.
European Committee for Standardization. (2015). EN 13201-5:2015. Light and lighting. Road lighting - part 5: energy performance indicators. Brussels.
Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M., & Haim, A. (2011). Limiting the impact of light pollution on human health, environment and stellar visibility. Journal of Environmental Management, 92(10), 2714–2722. https://doi.org/10.1016/j.jenvman.2011.06.029.
Fotios, S., & Cheal, C. (2009). Obstacle detection: a pilot study investigating the effects of lamp type, illuminance and age. Lighting Research and Technology, 41(4), 321–342. https://doi.org/10.1177/1477153509102343.
Fotios, S., & Cheal, C. (2011). Predicting lamp spectrum effects at mesopic levels. Part 1: spatial brightness. Lighting Research and Technology, 43(2), 143–157. https://doi.org/10.1177/1477153510393932.
Fotios, S., & Gibbons, R. (2018). Road lighting research for drivers and pedestrians: the basis of luminance and illuminance recommendations. Lighting Research and Technology, 50(1), 154–186. https://doi.org/10.1177/1477153517739055.
Fotios, S., & Goodman, T. (2012). Proposed UK guidance for lighting in residential roads. Lighting Research and Technology, 44(1), 69–83. https://doi.org/10.1177/1477153511432678.
Gasparovsky, D. (2015). Energy performance of public lighting. In Proceedings of the 21st International Conference LIGHT SVĚTLO 2015 (pp. 149–153). https://doi.org/10.13164/conf.light.2015.149.
Gasparovsky, D. (2016). Case-studies of the assessment of energy performance of road lighting. In IEEE Lighting Conference of the Visegrad Countries (Lumen V4) (pp. 1–5). Karpacz. https://doi.org/10.1109/LUMENV.2016.7745550.
Green, J., Perkins, C., Steinbach, R., & Edwards, P. (2015). Reduced street lighting at night and health: a rapid appraisal of public views in England and Wales. Health & Place, 34, 171–180. https://doi.org/10.1016/j.healthplace.2015.05.011.
Gutierrez-Escolar, A., Castillo-Martinez, A., Gomez-Pulido, J. M., Gutierrez-Martinez, J.-M., González-Seco, E. P. D., & Stapic, Z. (2017). A review of energy efficiency label of street lighting systems. Energy Efficiency, 10(2), 265–282. https://doi.org/10.1007/s12053-016-9454-7.
IDA. (2010). Visibility, environmental and astronomical issues associated with blue-rich white outdoor lighting. International Dark-Sky Association. Washington, D.C. https://www.darksky.org/wp-content/uploads/bsk-pdf-manager/8_IDA-BLUE-RICH-LIGHT-WHITE-PAPER.PDF. Accessed 25 August 2020
IDAE. (2012). Required technical requirements for luminaires with LED technology in exterior lighting. CEI-Comité Español de Iluminación. Madrid. https://www.idae.es/tecnologias/eficiencia-energetica/servicios/alumbrado-exterior. Accessed 25 August 2020
IDAE. (2017). 2017-2020 National Energy Efficiency Action Plan. IDAE-Instituto para la Diversificación y Ahorro de la Energía. Madrid. https://ec.europa.eu/energy/sites/ener/files/documents/es_neeap_2017_en.pdf. Accessed 21 March 2019
Jägerbrand, A. K. (2015). New framework of sustainable indicators for outdoor LED (light emitting diodes) lighting and SSL (solid state lighting). Sustainability (Switzerland), 7(1), 1028–1063. https://doi.org/10.3390/su7011028.
Kostic, M., & Djokic, L. (2009). Recommendations for energy efficient and visually acceptable street lighting. Energy, 34(10), 1565–1572. https://doi.org/10.1016/j.energy.2009.06.056.
Kostic, A., Kremic, M., Djokic, L., & Kostic, M. (2012). Light-emitting diodes in street and roadway lighting - a case study involving mesopic effects. Lighting Research and Technology, 45(2), 217–229. https://doi.org/10.1177/1477153512440771.
Kyba, C. C. M., Hänel, A., & Hölker, F. (2014). Redefining efficiency for outdoor lighting. Energy & Environmental Science, 7(6), 1806–1809. https://doi.org/10.1039/c4ee00566j.
Leccese, F., Salvadori, G., & Rocca, M. (2017). Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy. Energy, 138, 616–628. https://doi.org/10.1016/j.energy.2017.07.093.
Light Naturally. (2014). Energy efficiency performance requirements for road lighting designs and luminaires. South Australian Department of State Development. South Brisbane. https://www.energyrating.gov.au/sites/default/files/documents/StreetlightEEreport2014FINAL_0.pdf. Accessed 25 August 2020
Lobão, J. A., Devezas, T., & Catalão, J. P. S. (2015). Energy efficiency of lighting installations: software application and experimental validation. Energy Reports, 1, 110–115. https://doi.org/10.1016/j.egyr.2015.04.001.
Loe, D. (2003). Quantifying lighting energy efficiency: a discussion document. Lighting Research & Technology, 35(4), 319–326. https://doi.org/10.1191/1365782803li091oa.
Magrinyà, F., Marzá, F., & Feliu, R. (2009). Cerdà : 150 anys de modernitat. Barcelona : Fundació Urbs i Territori Idelfons Cerdà.
National Institute of Geography. (2017). Astronomía : Hora, salidas y puestas de sol. Salida y puesta del sol en Barcelona. https://cdn.mitma.gob.es/portal-web-drupal/salidapuestasol/2017/Barcelona-2017.txt. Accessed 18 September 2019
OCCC. (2020). Guide for calculating greenhouse gas (GHG) emissions. Oficina Catalana del Cambio Climático. https://canviclimatic.gencat.cat/web/.content/04_ACTUA/Com_calcular_emissions_GEH/guia_de_calcul_demissions_de_co2/200301_Guia-practica-calcul-emissions_CA.pdf. Accessed 30 June 2020
Ożadowicz, A., & Grela, J. (2017). Energy saving in the street lighting control system—a new approach based on the EN-15232 standard. Energy Efficiency, 10, 563–576. https://doi.org/10.1007/s12053-016-9476-1.
Pons, O., & Aguado, A. (2012). Integrated value model for sustainable assessment applied to technologies used to build schools in Catalonia, Spain. Building and Environment, 53, 49–58. https://doi.org/10.1016/j.buildenv.2012.01.007.
Pons, O., & de la Fuente, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49, 882–893. https://doi.org/10.1016/j.conbuildmat.2013.09.009.
Pons, O., de la Fuente, A., & Aguado, A. (2016). The use of MIVES as a sustainability assessment MCDM method for architecture and civil engineering applications. Sustainability (Switzerland), 8(5). https://doi.org/10.3390/su8050460.
Pracki, P. (2011). A proposal to classify road lighting energy efficiency. Lighting Research and Technology, 43(3), 271–280. https://doi.org/10.1177/1477153511407996.
Pracki, P., & Skarzyński, K. (2020). A multi-criteria assessment procedure for outdoor lighting at the design stage. Sustainability, 12(4). https://doi.org/10.3390/su12041330.
Pujadas, P., Pardo-Bosch, F., Aguado-Renter, A., & Aguado, A. (2017). MIVES multi-criteria approach for the evaluation, prioritization, and selection of public investment projects. A case study in the city of Barcelona. Land Use Policy, 64, 29–37. https://doi.org/10.1016/j.landusepol.2017.02.014.
Rabaza, O., Peña-García, A., Pérez-Ocón, F., & Gómez-Lorente, D. (2013). A simple method for designing efficient public lighting, based on new parameter relationships. Expert Systems with Applications, 40(18), 7305–7315. https://doi.org/10.1016/j.eswa.2013.07.037.
Rabaza, O., Gómez-Lorente, D., Pérez-Ocón, F., & Peña-García, A. (2016). A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis. Energy, 107, 831–842. https://doi.org/10.1016/j.energy.2016.04.078.
Rabaza, O., Molero-Mesa, E., Aznar-Dols, F., & Gómez-Lorente, D. (2018). Experimental study of the levels of street lighting using aerial imagery and energy efficiency calculation. Sustainability, 10(12), 4365. https://doi.org/10.3390/su10124365.
Radulovic, D., Skok, S., & Kirincic, V. (2011). Energy efficiency public lighting management in the cities. Energy, 36(4), 1908–1915. https://doi.org/10.1016/j.energy.2010.10.016.
Regional Council of Emilia Romagna. (2015). Directive No. 1732 of the November 12, 2015. Third directive for the application of the article 2 of Regional Law no. 19/2003 e “Standards on reduction of light pollution and energy saving” [in Italian]. Bologna, Italy.
Royal Decree 1890/2008. (2008). 14th November, by approving energetic efficiency. Regulation in outdoor lighting installations and their complementary instructions EA-01 and EA-07. Madrid, España: Ministerio de Industria, Turismo y Comercio.
Security and Mobility Department. (2011). Daily volume of traffic-Barcelona. Barcelona: Barcelona City Hall. http://mobilitat.ajuntament.barcelona.cat/sites/default/files/aranya2011_0.pdf. Accessed 5 March 2018
Stone, T. (2017). Light Pollution: a case study in framing an environmental problem. Ethics, Policy & Environment, 20(3), 279–293. https://doi.org/10.1080/21550085.2017.1374010.
van Bommel, W. (2015a). Purpose and benefits of road lighting. In Road Lighting (pp. 3–6). Berlin: Springer International Publishing. https://doi.org/10.1007/978-3-319-11466-8_1.
van Bommel, W. (2015b). Mesopic vision. In Road lighting (pp. 71–82). Springer International Publishing. https://doi.org/10.1007/978-3-319-11466-8_6
Ylinen, A., Tahkamo, L., Puolakka, M., & Halonen, L. (2011). Road lighting quality, energy efficiency, and mesopic design – LED street lighting case study. Leukos, 08, 9–24. https://doi.org/10.1582/LEUKOS.2011.08.01.001.
Zielinska-Dabkowska, K. M. (2018). Make lighting healthier. Nature, 553(7688), 274–276. https://doi.org/10.1038/d41586-018-00568-7.
Acknowledgments
The authors would like to thank to Begoña Tomás Mujal and Germán Carbajo Juanino from the Street Lighting Management of Barcelona for their support and for the street lighting data provided.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Sánchez-Balvás, L.A., de Felipe, J.J., Quintero, J.M. et al. An energy efficiency-based classification approach for street lighting by considering operational factors: a case study of Barcelona. Energy Efficiency 14, 15 (2021). https://doi.org/10.1007/s12053-020-09915-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12053-020-09915-y