Design and realisation of the Passive House concept in different climate zones


The term Passive House refers to a performance-based energy standard for high-efficiency buildings. It is clearly defined, with validity for all climates of the world. Under cold climate conditions, the design typically focuses on minimising heat losses and optimising solar gains. In milder climates, moderate insulation, including improved window qualities, is sufficient, but on the other hand, the building performance during summer requires more careful consideration. For hotter climates, the insulation requirements increase again, and solar loads through windows, walls and roofs must be limited. In hot and humid climates, humidity loads are also minimised or reduced. In practical implementation, every Passive House has its own, specific boundary conditions which lead to different constructions and technical solutions to fulfil the stringent requirements of the Passive House standard. The paper briefly introduces Passive House design principles and criteria. Then, nine examples for passive houses in climates of Canada, the USA, Germany, China, Greece, Spain, Taiwan, Mexico and the United Arab Emirates illustrate the bandwidth of possible solutions. For many projects, practical experiences are available, which typically reveal high user satisfaction and energy consumptions close to what would be expected from the design calculations. In some cases, a potential for further improvements is described.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41


  1. Buildup, the European portal for energy efficiency in buildings (2016). Passivistas - The House Project: Retrofit towards nZEB 2020. Highlighted Case September 2016. Accessed 27 July 2018.

  2. Consoli, A., Costanzo, V., Evola, G., & Marletta, L. (2017). Refurbishing an existing apartment block in Mediterranean climate: towards the Passivhaus standard. Energy Procedia, 111, 397–406.

    Article  Google Scholar 

  3. Cordis (1997): CEPHEUS: cost efficient passive houses as European standards. Accessed 25 October 2018.

  4. Dan, D., Tanasa, C., Stoian, V., Brata, S., Stoian, D., Nagy, G. T., & Florut, S. C. (2016). Passive House design—an efficient solution for residential buildings in Romania. Energy for Sustainable Development, 2016(32), 99–109.

    Article  Google Scholar 

  5. Eian, T.D., Konkol, G., et al. (2018). Passive House in the woods, Accessed 2 Aug 2018.

  6. EnEV (2002): Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordnung - EnEV) vom 16. November 2001. Accessed 21 Dec 2018.

  7. EnEV (2014): Energieeinsparverordnung vom 24. Juli 2007 (BGBl. I S. 1519), die zuletzt durch Artikel 3 der Verordnung vom 24. Oktober 2015 (BGBl. I S. 1789) geändert worden ist. Accessed 21 Dec 2018.

  8. Eurostat (2018), Average size of dwelling by household type and degree of urbanisation. Accessed 13 Aug 2018.

  9. Feist, W., Werner, J. (1993): Erste Meßergebnisse aus dem Passivhaus Darmstadt Kranichstein. gi Gesundheitsingenieur.

  10. Feist, W., Werner, J. (1994): Gesamtenergiekennwert < 32 kWh/(m2a). Bundesbaublatt.

  11. Feist, W. (1996). Grundlagen der Gestaltung von Passivhäusern. Darmstadt: Verlag das Beispiel.

    Google Scholar 

  12. Feist, W. (1997): Passivhaus Darmstadt Kranichstein - Planung, Bau, Ergebnisse. Fachinformation PHI-1997/4. Passive House Institute, Darmstadt.

  13. Feist, W. (1998): Cost efficient passive houses in Central European climate. 1998 ACEEE Summer Study on Energy Efficiency in Buildings. Accessed 21 Dec 2018.

  14. Feist, W. (2004). Wärmeübergabeverluste im Licht der Baupraxis. In W. Feist (Ed.), Arbeitskreis kostengünstige Passivhäuser Phase III, Protokollband Nr. 28. Darmstadt: Wärmeübergabe- und Verteilverluste im Passivhaus. Passive House Institute.

    Google Scholar 

  15. Feist, W., Peper, S., Kah, O., von Oesen, M. (2005): Climate neutral passive house estate in Hannover-Kronsberg: construction and measurement results. Accessed 21 Dec 2018.

  16. Feist, W. (2007). Passivhäuser in der Praxis. In N. A. Fouad (Ed.), Bauphysik-Kalender 2007 (pp. 675–741). Berlin: Ernst & Sohn.

    Google Scholar 

  17. Feist, W. (2013). Energy concepts—the passive house compared. In W. Feist (Ed.), Proceedings of the 17th international passive house conference 2013 in Frankfurt am Main. Darmstadt: Passive House Institute.

    Google Scholar 

  18. Feist, W. (2014): Passive house—the next decade. Proceedings of the 18th international passive house conference 2014 in Aachen. Passive House Institute, Darmstadt.

  19. Feist, W., et al. (2015). Passive house planning package (PHPP), version 9, user handbook. Darmstadt: Passive House Institute.

    Google Scholar 

  20. Figueiredo, A., Figueira, J., Vicente, R., & Maio, R. (2016). Thermal comfort and energy performance: sensitivity analysis to apply the passive house concept to the Portuguese climate. Building and Environment, 2016, 103.

    Google Scholar 

  21. Fokaides, P. A., Christoforou, E., Ilic, M., & Papadopoulos, A. (2016). Performance of a passive house under subtropical climatic conditions. Energy and Buildings, 133, 14–31.

    Article  Google Scholar 

  22. GBPN (2019): Tool for building energy performance scenarios. Accessed 23 Jan 2019.

  23. Grinden, B.; Feilberg, N. (2008): REMODECE, residential monitoring to decrease energy use and carbon emissions in Europe, analysis of monitoring campaign in Europe. Accessed 13 Aug 2018.

  24. Grove-Smith, J.; Feist, W. (2015): The PER sustainability assessment. Proceedings of the 19th international passive house conference 2015 in Leipzig. Passivhaus Institut, Darmstadt.

  25. Grove-Smith, J., Feist, W., & Krick, B. (2016). Balancing energy efficiency and renewables. In P. Bertoldi (Ed.), Proceedings of the 9th international conference improving energy efficiency in commercial buildings and smart communities, EUR 27993 EN (pp. 894–902). European Union.

  26. Grove-Smith, J., Aydin, V., Feist, W., Schnieders, J., & Thomas, S. (2018). Standards and policies for very high energy efficiency in the urban building sector towards reaching the 1.5°C target. Current Opinion in Environmental Sustainability, 30, 103–114.

    Article  Google Scholar 

  27. Hasper, W. (2012). Betonkerntemperierung in Passivhäusern. In W. Feist (Ed.), Arbeitskreis kostengünstige Passivhäuser, Protokollband Nr. 41. Darmstadt: Passivhaus Institut.

    Google Scholar 

  28. Hasper, W. (2015). Warmwassernutzung: Messergebnisse, Ansätze zur Mengenreduktion und Planungsansätze. In W. Feist (Ed.), Arbeitskreis kostengünstige Passivhäuser, Protokollband Nr. 49. Darmstadt: Passivhaus Institut.

    Google Scholar 

  29. ISO 7730 (2005), Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria (ISO 7730:2005).

  30. Kalz, D.; Pfafferott, J.; Herkel, S. (2006): Monitoring and data analysis of two low energy office buildings with a thermo-active building system (TABS). EPIC 2006 AIVC Proceedings. Accessed 16 Aug 2018.

  31. Kaufmann, B., & Schnieders, J. (2012). Solare Lasten – Sonnenschutz – Tageslicht – Interne Wärmequellen – Kunstlicht – EDV: Betriebserfahrungen Bürogebäude luteco. In W. Feist (Ed.), Arbeitskreis kostengünstige Passivhäuser, Protokollband Nr. 41. Darmstadt: Passivhaus Institut.

    Google Scholar 

  32. Kaufmann, B.; Schöberl, H.; Michulec, D. (2017): Monitoring office PH building in ZhuoZhou, China. Proceedings of the 21st passive house conference 2017 in Vienna. Passive House Institute, Darmstadt.

  33. Khalfan, M., & Sharples, S. (2016). The present and future energy performance of the first Passivhaus project in the Gulf region. Sustainability, 8, 139.

    Article  Google Scholar 

  34. Krick, B. (2012). Zertifikatskriterien und Berechnungsvorschriften für Passivhaus geeignete transparente Bauteile. Darmstadt: Passive House Institute.

    Google Scholar 

  35. Pallantzas, S., Roditi, A. (2016): Passivistas: the house project. Proceedings of the 20th international passive house conference 2016 in Darmstadt.

  36. Leutner, B., Clar, M (2016): Analyse des Einflusses der energetischen Standards auf die Baukosten im öffentlich geförderten Wohnungsbau in Hamburg.

  37. Pallantzas, S., Pappas, I. (2017). Passivistas EnerPHit project in Athens: one year overall measurements, one year of living. Proceedings of the 21st international passive house conference 2017 in Vienna.

  38. Passipedia (2018). Passive houses in tropical climates. Accessed 26 Jul 2018.

  39. Passive House Institute (2012): Technical annex of the supported NAMA for sustainable housing in Mexico—mitigation actions and financing packages. Passivhaus Institut, Darmstadt.

  40. Passive House Institute (2016): Criteria for the passive house, EnerPHit and PHI low energy building standard, Accessed 25 July 2018.

  41. Passive House Institute (2018). Passive House Database. Accessed 27 July 2018.

  42. Peper, S., Feist, W. (2015). Energy efficiency of the passive house standard: expectations confirmed by measurements in practice—report 2015. Accessed 21 Dec 2018.

  43. PROFECO (2016). Calentadores solares de agua. Usa la energía solar a tu favor. Procuraduría Federal del Consumidor, Mexico. Accessed 15 Aug 2018.

  44. Schnieders, J., Feist, W., Pfluger, R., & Kah, O. (2001). CEPHEUS—cost efficient passive houses as European standards – Wissenschaftliche Begleitung und Auswertung Endbericht. Darmstadt: Passivhaus Institut.

    Google Scholar 

  45. Schnieders, J. (2003): CEPHEUS—measurement results from more than 100 dwelling units in passive houses. Proceedings of the ECEEE 2003 summer study.

  46. Schnieders, J., & Hermelink, A. (2006). CEPHEUS results: measurements and occupants’ satisfaction provide evidence for passive houses being an option for sustainable building. Energy Policy, 34, 151–171.

    Article  Google Scholar 

  47. Schnieders, J. (2009): Passive houses in South West Europe. A quantitative investigation of some passive and active space conditioning techniques for highly energy efficient dwellings in the South West European region. 2nd, corrected edition. Passivhaus Institut, Darmstadt.

  48. Schnieders, J., et al. (2012): Passive houses in different climate zones. Passivhaus Institut, Darmstadt, 2012.

  49. Schnieders, J. (2012). Planungstools für den Sommerfall im Nichtwohngebäude. In W. Feist (Ed.), Arbeitskreis kostengünstige Passivhäuser, Protokollband Nr. 41. Darmstadt: Passivhaus Institut.

    Google Scholar 

  50. Schnieders, J. (2014): Passive Wärmerückgewinnung aus Duschwasser, Möglichkeiten und Messergebnisse. HLH 65.

  51. Schnieders, J., Feist, W., & Rongen, L. (2015). Passive houses for different climate zones. Energy and Buildings, 105, 71–87.

    Article  Google Scholar 

  52. Schnieders, J. (2016): Passive house design in different Chinese climates—it works everywhere. Proceedings of the 20th passive house conference 2016 in Darmstadt, Passive House Institute, Darmstadt.

  53. Schnieders, J., Schulz, T., Feist, W., Kaufmann, B., Sheng, S., Jiang, H., Winkel, S., Buteikyte, E., & Sifferlen, C. (2016). Passive houses in Chinese climates. Darmstadt: Passive House Institute.

    Google Scholar 

  54. Schöberl, H.; Michulec, D. (2015): Certified passive house in China with planning and implementation done by Chinese firms. Proceedings of the 19th passive house conference, Passive House Institute, Darmstadt.

  55. Sociedad Hipotecaria Federal (2018): Componente LAIF del Programa EcoCasa. Accessed 26 Jul 2018.

  56. Statistisches Bundesamt (2011): Durchschnittliche Wohnfläche pro Person nach Haushaltstyp 2011. Accessed 28 Jun 2018.

  57. Ürge-Vorsatz, D.; Petrichenko, K.; Antal, M.; Staniec, M.; Labelle, M.; Ozden, E.; Labzina, E. (2012): Best practice policies for low energy and carbon buildings. A scenario analysis. Research report prepared by the Center for Climate Change and Sustainable Policy (3CSEP) for the global buildings performance network. May 2012. Accessed 23 Jan 2019.

Download references

Author information



Corresponding author

Correspondence to Jürgen Schnieders.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schnieders, J., Eian, T.D., Filippi, M. et al. Design and realisation of the Passive House concept in different climate zones. Energy Efficiency (2019).

Download citation


  • Passive House
  • Efficiency
  • Climate
  • Comfort
  • Cooling
  • NZEB