Abstract
There is a large literature suggesting that improvements in energy efficiency support efforts at climate mitigation. Addressing a conceptual gap in that literature, however, we evaluate whether there are any conditions under which policies to promote improvements in energy efficiency could be counterproductive to efforts to limit climate change to 1.5 °C global warming from pre-industrial times. We identify three conditions under which this could be the case. The first condition is if policies for energy efficiency have a political opportunity cost, in terms of crowding out or delaying policies aimed at decarbonizing energy supply. There is an extensive literature in the fields of political science and policy studies to suggest that this is possible, but there have been no studies examining whether it has actually happened or is likely to happen in the future. The second condition is if investments in energy efficiency improvements come at a higher cost, per unit of fossil energy avoided, than do investments in new renewable energy supply. Current cost estimates suggest that there are some energy efficiency investments for which this is the case, but it is difficult to predict whether this will remain the case in the future. The third condition is if policies for energy efficiency, or specific investments in energy efficiency, were to delay the complete decarbonization of energy supply by more than some critical value. We show that critical delay is quite short—measured in weeks to months—in the case of a 1.5 °C temperature target, assuming constrained availability of negative emission technologies. It is impossible to say whether any of these conditions is likely, but in theory, each of them would appear to be possible.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American Economic Review, 102, 131–166.
Aghion, P., Dechezleprêtre, A., Hémous, D., Martin, R., & Van Reenen, J. (2016). Carbon taxes, path dependency, and directed technical change: evidence from the auto industry. Journal of Political Economy, 124, 1–51.
Backlund, S., Thollander, P., Palm, J., & Ottosson, M. (2012). Extending the energy efficiency gap. Energy Policy, 51, 392–396. https://doi.org/10.1016/j.enpol.2012.08.042.
Banerjee, R., Cong, Y., Gielen, D., Jannuzzi, G., Maréchal, F., McKane, A.T., Rosen, M.A., van Es, D., Worrell, E., (2012). Chapter 8—Energy end use: Industry, in: Global energy assessment—toward a sustainable future. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 513–574.
Bertram, C., Johnson, N., Luderer, G., Riahi, K., Isaac, M., & Eom, J. (2015). Carbon lock-in through capital stock inertia associated with weak near-term climate policies. Technological Forecasting and Social Change, 90, 62–72. https://doi.org/10.1016/j.techfore.2013.10.001.
Blanco, G., Gerlach, R., Suh, S., Barrett, J., de Coninck, H. C., Diaz Morejon, C., Mathur, R., Nakicenovic, N., Ofosu Ahenkora, A., Pan, J., Pathak, H., Richels, R., Smith, S., Stern, D., Toth, F., & Zhou, P. (2014). Drivers, trends and mitigation, in: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK and New York USA, pp. In 351–411.
Blyth, W., Bradley, R., Bunn, D., Clarke, C., Wilson, T., & Yang, M. (2007). Investment risks under uncertain climate change policy. Energy Policy, 35, 5766–5773. https://doi.org/10.1016/j.enpol.2007.05.030.
Bolton, D., 2015. Sweden wants to become the first fossil fuel-free country in the world—how will it work? The Independent.
Bowen, A., Campiglio, E., & Tavoni, M. (2014). A macroeconomic perspective on climate change mitigation: Meeting the financing challenge. Clim. Change Econ., 05, 1440005. https://doi.org/10.1142/S2010007814400053.
Buchner, B., Falconer, A., Herve-Mignucci, M., Trabacchi, C., Brinkman, M., (2011). The landscape of climate finance. Climate Policy Initiative, Venice.
Bürer, M. J., & Wüstenhagen, R. (2009). Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energy Policy, 37, 4997–5006. https://doi.org/10.1016/j.enpol.2009.06.071.
Calel, R., 2018. Adopt or innovate: Understanding technological responses to cap-and-trade.
Calel, R., & Dechezleprêtre, A. (2016). Environmental tchnology and directed technological change: Evidence from the European carbon market. The Review of Economics and Statistics, 98, 173–191.
Chong, D., & Druckman, J. (2007). Framing theory. Annual Review of Political Science, 10, 103–126.
Chow, J., Kopp, R.J., Portney, P.R. (2003). Energy resources and global development. Science %R https://doi.org/10.1126/science.1091939 302, 1528–1531.
CIA. (2016). World Factbook 2014–15. Washington DC: Central Intelligence Agency.
Díaz, P., van Vliet, O., & Patt, A. (2017). Do we need gas as a bridging fuel? A case study of the electricity system of Switzerland. Energies, 10. https://doi.org/10.3390/en10070861.
Edenhofer, O., Pichs-Madruga, R., Sokona, Y. (2014). IPCC, 2014: Climate change 2014: Mitigation of climate change. Cambridge University Press, Cambridge UK and New York USA.
Eskeland, G., Criqui, P., Jochem, E., & Neufeldt, H. (2010). Transforming the European energy system. In M. Hulme & H. Neufeldt (Eds.), Making climate change work for us: European perspectives on adaptation and mitigation strategies (pp. 165–199). Cambridge: Cambridge University Press.
Fisher-Vanden, K., Jefferson, G. H., Liu, H., & Tao, Q. (2004). What is driving China’s decline in energy intensity? Resource and Energy Economics, 26, 77–97. https://doi.org/10.1016/j.reseneeco.2003.07.002.
Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quere, C., Raupach, M. R., Sharifi, A., Smith, P., & Yamagata, Y. (2014). Betting on negative emissions. Nature Climate Change, 4, 850–853.
Fuss, S., Jones, C., Kraxner, F., Peters, G., Smith, P., Tavoni, M., Van Vuuren, D., Canadell, J., Jackson, R., & Milne, J. (2016). Research priorities for negative emissions. Environmental Research Letters, 11, 115007.
G20, 2017. G20 Hamburg: Climate and Energy Action Plan for Growth.
GEA. (2012). Global energy assessment—toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY. In USA and the international institute for applied systems analysis. Austria: Laxenburg.
Geels, F. (2005). Technological transition and system innovations: A co-evolutionary and socio-technical analysis. In Edward Elgar. UK: Cheltenham.
Gillingham, K., Kotchen, M. J., Rapson, D. S., & Wagner, G. (2013). The rebound effect is overplayed. Nature, 493, 475–476.
Gillingham, K., & Palmer, K. (2014). Bridging the energy efficiency gap: Policy insights from economic theory and empirical evidence. Review of Environmental Economics and Policy, 8, 18–38. https://doi.org/10.1093/reep/ret021.
Gillingham, K., Rapson, D., & Wagner, G. (2016). The rebound effect and energy efficiency policy. Review of Environmental Economics and Policy, 10, 68–88. https://doi.org/10.1093/reep/rev017.
Grubb, M. (2014). Planetary economics: Energy, climate change and the three domains of sustainable development. London: Earthscan.
Grübler, A., Nakicenovic, N., & Victor, D. (1999). Dynamics of energy technologies and global change. Energy Policy, 27, 247–280.
Gupta, S., Harnisch, J., Barua, D., Chingambo, L., Frankel, P., Garrido, R., Gomez-Echeverri, L., Haites, E., Huang, Y., Kopp, R., Lefevre, B., Machado-Filho, H., & Massetti, E. (2014). Cross-cutting investment and finance issues. In Climate change 2014. New York: Cambridge University Press.
Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243–1248.
Harvey, L. (2013). Recent advances in sustainable buildings: Review of the energy and cost performance of the state-of-the-art best practices from around the world. Annual Review of Environment and Resources, 38, 281–309.
Held, A., Ragwitz, M., & Haas, R. (2006). On the success of policy strategies for the promotion of electricity from renewable energy sources in the EU. Energy & Environment, 17, 849–868. https://doi.org/10.1260/095830506779398849.
Howlett, M., McConnell, A., & Perl, A. (2016). Moving policy theory forward: Connecting multiple stream and advocacy coalition frameworks to policy cycle models of analysis. Australian Journal of Public Administration, 76, 65–79. https://doi.org/10.1111/1467-8500.12191.
Huang, Y., Barker, T. (2009). The clean development mechanism and sustainable development: A panel data analysis.
IEA. (2016). Energy efficiency market report 2016. Paris: International Energy Agency.
Ingold, K., Fischer, M., & Cairney, P. (2016). Drivers for policy agreement in nascent subsystems: An application of the advocacy coalition framework to fracking policy in Switzerland and the UK. Policy Studies Journal, 45, 442–463. https://doi.org/10.1111/psj.12173.
IRENA (2016). The power to change: solar and wind cost reduction potential to 2025.
Jaffe, A., Newell, R., & Stavins, R. (2003). Technological change and the environment. In Handbook of environmental economics (pp. 461–516). Elsevier Science B.V.
Johnstone, N., Hascic, I., & Popp, D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental and Resource Economics, 45, 133–155.
Kahn Ribeiro, S., Figueroa, M. J., Creutzig, F., Dubeux, C., Hupe, J., & Kobayashi, S. (2012). Chapter 9—Energy end-use: Transport, in: Global energy assessment—Toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis (pp. 575–648). Austria: Laxenburg.
Karali, N., Park, W., McNeil, M. (2015). Using learning curves on energy-efficient technologies to estimate future energy savings and emissions reduction potentials in the U.S. iron and steel industry (No. LBNL-184179). Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA.
Kingdon, J. (1995). Agendas, alternatives, and public policies (2nd ed.). New York: Longman.
Kivimaa, P., & Mickwitz, P. (2011). Public policy as a part of transforming energy systems: Framing bioenergy in Finnish energy policy. Journal of Cleaner Production, 19, 1812–1821. https://doi.org/10.1016/j.jclepro.2011.02.004.
Knight, E. (2010). The economic geography of clean tech venture capital.
Labordena, M., Patt, A., Bazilian, M., Howells, M., & Lilliestam, J. (2017). Impact of political and economic barriers for concentrating solar power in sub-Saharan Africa. Energy Policy, 102, 52–72. https://doi.org/10.1016/j.enpol.2016.12.008.
Lilliestam, J., Ellenbeck, S., Karakosta, C., & Caldés, N. (2016). Understanding the absence of renewable electricity imports to the European Union. International Journal of Energy Sector Man, 10, 291–311. https://doi.org/10.1108/IJESM-10-2014-0002.
Lilliestam, J., Labordena, M., Patt, A., & Pfenninger, S. (2017). Empirically observed learning rates for concentrating solar power and their responses to regime change. Nature Energy, 2, 17094.
Lucon, O., Ürge-Vorsatz, D., Ahmed, A., Akbari, H., Bertoldi, P., Cabeza, L., Eyre, N., Gadgil, A., Harvey, L., Jiang, Y., Liphoto, E., Mirasgedis, S., Murakami, S., Parikh, J., Pyke, C., & Vilarino, M. (2014). Buildings, in: Climate change 2014. New York: Cambridge University Press.
Luderer, G., Pietzcker, R., Bertram, C., Kriegler, E., Meinshausen, M., & Edenhofer, O. (2013). Economic mitigation challenges: How further delay closes the door for achieving climate targets. Environmental Research Letters, 8, 034033.
Madlener, R., & Alcott, B. (2009). Energy rebound and economic growth: A review of the main issues and research needs. Energy, 34, 370–376 https://doi.org/10.1016/j.energy.2008.10.011.
MCC (2017). That’s how fast the carbon clock is ticking. Mercator Research Institute on Climate Commons and Climate Change: Research.
Neij, L. (2008). Cost development of future technologies for power generation: A study based on experience curves and complementary bottom-up assessments. Energy Policy, 36, 2200–2211.
Noailly, J., & Smeets, R. (2015). Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data. Journal of Environmental Economics and Management, 72, 15–37. https://doi.org/10.1016/j.jeem.2015.03.004.
Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5, 329–332.
Obama, B. (2017). The irreversible momentum of clean energy. Science, 355, 126–129. https://doi.org/10.1126/science.aam6284.
OECD. (2015). Mapping channels to mobilize institutional investment in sustainable energy, green finance and investment. Paris: OECD Publishing.
Ondraczek, J., Komendantova, N., & Patt, A. (2015). WACC the dog: The effect of financing costs on the levelized cost of solar PV power. Renewable Energy, 75, 888–898. https://doi.org/10.1016/j.renene.2014.10.053.
Patt, A. (2015). Transforming energy: Solving climate change with technology policy. New York: Cambridge University Press.
Patterson, M. G. (1996). What is energy efficiency? Energy Policy, 24, 377–390. https://doi.org/10.1016/0301-4215(96)00017-1.
Pfenninger, S., Gauche, P., Lilliestam, J., Damerau, K., Wagner, F., & Patt, A. (2014). Potential for concentrating solar power to provide baseload and dispatchable power. Nature Climate Change, 4, 689–692.
Pietzcker, R. C., Ueckerdt, F., Carrara, S., de Boer, H. S., Després, J., Fujimori, S., Johnson, N., Kitous, A., Scholz, Y., Sullivan, P., & Luderer, G. (2017). System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Economics, 64, 583–599. https://doi.org/10.1016/j.eneco.2016.11.018.
Portney, P., & Stavins, R. (2000). Public policies for environmental protection. Washington: Resources for the Future.
Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., Schaeffer, M., Edmonds, J., Isaac, M., Krey, V., Longden, T., Luderer, G., Méjean, A., McCollum, D. L., Mima, S., Turton, H., van Vuuren, D. P., Wada, K., Bosetti, V., Capros, P., Criqui, P., Hamdi-Cherif, M., Kainuma, M., & Edenhofer, O. (2015). Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 90, 8–23. https://doi.org/10.1016/j.techfore.2013.09.016.
Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 [deg]C. Nature Clim. Change, 5, 519–527.
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., & Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 8, 325–332. https://doi.org/10.1038/s41558-018-0091-3.
Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vuuren, D. P., Riahi, K., Allen, M., & Knutti, R. (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6, 245–252.
Rubin, E. S., Azevedo, I. M. L., Jaramillo, P., & Yeh, S. (2015). A review of learning rates for electricity supply technologies. Energy Policy, 86, 198–218. https://doi.org/10.1016/j.enpol.2015.06.011.
Sabatier, P. A. (1988). An advocacy coalition framework of policy change and the role of policy-oriented learning therein. Policy Sciences, 21, 129–168. https://doi.org/10.1007/BF00136406.
Schmidt, T. S. (2014). Low-carbon investment risks and de-risking. Nature Climate Change, 4, 237–239.
Scholz, Y., Gils, H. C., & Pietzcker, R. C. (2017). Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares. Energy Economics, 64, 568–582. https://doi.org/10.1016/j.eneco.2016.06.021.
Scrase, J. I., & Ockwell, D. G. (2010). The role of discourse and linguistic framing effects in sustaining high carbon energy policy—An accessible introduction. Energy Policy, 38, 2225–2233. https://doi.org/10.1016/j.enpol.2009.12.010.
Sims, R., Schaeffer, R., Creutzig, F., Cruz-Nunez, X., D’Agosto, M., Dimitriu, D., Meza, M., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J., Sperling, D., Tiwari, G., 2014. Transport, in: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK and New York USA.
Skidelsky, R., & Skidelsky, E. (2012). How much is enough: Money and the good life. New York: Other Press.
Smith, P., Davis, S.J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R.B., Cowie, A., Kriegler, E., van Vuuren, D.P., Rogelj, J., Ciais, P., Milne, J., Canadell, J.G., McCollum, D., Peters, G., Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W.K., Jonas, M., Jones, C.D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J.R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., Yongsung, C. (2015). Biophysical and economic limits to negative CO2 emissions 6, 42.
Smith, S. J., Wei, M., & Sohn, M. D. (2016). A retrospective analysis of compact fluorescent lamp experience curves and their correlations to deployment programs. Energy Policy, 98, 505–512. https://doi.org/10.1016/j.enpol.2016.09.023.
Sorrell, S. (2015). Reducing energy demand: A review of issues, challenges and approaches. Renewable and Sustainable Energy Reviews, 47, 74–82. https://doi.org/10.1016/j.rser.2015.03.002.
Stulz, R., Tanner, S., & Sigg, R. (2011). Chapter 16 - Swiss 2000-watt society: A sustainable energy vision for the future A2 - Sioshansi, Fereidoon P. In Energy, sustainability and the environment (pp. 477–496). Boston: Butterworth-Heinemann.
Suh, S. (2006). Are services better for climate change? Environmental Science & Technology, 40, 6555–6560. https://doi.org/10.1021/es0609351.
Sustainable Development Commission. (2009). Prosperity without growth. London: British Sustainable Development Commission.
United Nations Population Division, 2007. World population prospects: The 2006 revision.
Ürge-Vorsatz, D., Eyre, N., Graham, P., Harvey, D., Hertwich, E., Jiang, Y., Kornevall, C., Majumdar, M., McMahon, J.E., Mirasgedis, S., Murakami, S., Novikova, A. (2012). Chapter 10—Energy end-use: Building, in: Global energy assessment—Toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 649–760.
Van Buskirk, R., Kanter, C., Gerke, B., & Chu, S. (2014). A retrospective investigation of energy efficiency standards: Policies may have accelerated long term declines in appliance costs. Environmental Research Letters, 9, 114010.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., van den Berg, M., Bijl, D. L., de Boer, H. S., Daioglou, V., Doelman, J. C., Edelenbosch, O. Y., Harmsen, M., Hof, A. F., & van Sluisveld, M. A. E. (2018). Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 8, 391–397. https://doi.org/10.1038/s41558-018-0119-8.
Vogt-Schilb, A., & Hallegatte, S. (2014). Marginal abatement cost curves and the optimal timing of mitigation measures. Energy Policy, 66, 645–653. https://doi.org/10.1016/j.enpol.2013.11.045.
Voigt, S., De Cian, E., Schymura, M., & Verdolini, E. (2014). Energy intensity developments in 40 major economies: Structural change or technology improvement? Energy Economics, 41, 47–62. https://doi.org/10.1016/j.eneco.2013.10.015.
Wang, C., Liao, H., Pan, S.-Y., Zhao, L.-T., & Wei, Y.-M. (2014). The fluctuations of China’s energy intensity: Biased technical change. Applied Energy, 135, 407–414. https://doi.org/10.1016/j.apenergy.2014.06.088.
Weible, C. M., & Jenkins-Smith, H. C. (2016). The advocacy coalition framework: An approach for the comparative analysis of contentious policy issues. In B. G. Peters & P. Zittoun (Eds.), Contemporary approaches to public policy: Theories, controversies and perspectives. (pp. 15–34). London: Palgrave Macmillan UK.
Weiss, M., Junginger, M., Patel, M. K., & Blok, K. (2010a). A review of experience curve analyses for energy demand technologies. Technological Forecasting and Social Change, 77, 411–428. https://doi.org/10.1016/j.techfore.2009.10.009.
Weiss, M., Patel, M. K., Junginger, M., & Blok, K. (2010b). Analyzing price and efficiency dynamics of large appliances with the experience curve approach. Energy Policy, 38, 770–783. https://doi.org/10.1016/j.enpol.2009.10.022.
Wilson, C., Grubler, A., Gallagher, K. S., & Nemet, G. F. (2012). Marginalization of end-use technologies in energy innovation for climate protection. Nature Climate Change, 2, 780–788.
Wiser, R., Bolinger, M., 2014. 2013 Wind Technologies Market Report. Lawrence Berkeley Laboratory, United States Department of Energy, Berkeley, CA.
Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., & Smith, A. (2016). Expert elicitation survey on future wind energy costs. Nature Energy, 1, 16135. https://doi.org/10.1038/nenergy.2016.135.
World Bank (2017). World development indicators.
Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2008). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2, 109–123. https://doi.org/10.1007/s12053-008-9032-8.
Wurlod, J., Noailly, J. (2016). The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries.
York, R., Rosa, E. A., & Dietz, T. (2003). STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46, 351–365. https://doi.org/10.1016/S0921-8009(03)00188-5.
Zhao, X., Ma, C., & Hong, D. (2010). Why did China’s energy intensity increase during 1998–2006: Decomposition and policy analysis. Energy Policy, 38, 1379–1388. https://doi.org/10.1016/j.enpol.2009.11.019.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Patt, A., van Vliet, O., Lilliestam, J. et al. Will policies to promote energy efficiency help or hinder achieving a 1.5 °C climate target?. Energy Efficiency 12, 551–565 (2019). https://doi.org/10.1007/s12053-018-9715-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12053-018-9715-8