Skip to main content
Log in

Energy performance of buildings: A statistical approach to marry calculated demand and measured consumption

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

In public debate, Energy Performance Certificates (EPCs) of buildings have been criticised for not reflecting the energy demand realistically. And indeed, measurement, as in energy bills, usually differs from the calculation, in particular, when simplified energy performance calculation models and standard specifications are applied, as in EPCs. Thus, energy-saving potentials of refurbishment recommendations and their cost-effectiveness tend to be over-estimated. Of course, this is not desirable. These effects were analysed in two sets of data, the Energy Performance Certificate Register for residential buildings in Luxemburg, run by the Luxemburg Ministry of the Economy (Lichtmeß, 2012) and a database gathered in the research project “Teilenergiekennwerte von Nichtwohngebäuden (TEK)” (Hörner et al., 2014a) funded by the German Federal Ministry of Economic Affairs and Energy. Multiple linear regression and error calculus were applied to study the gap between measurement and various calculation models in detail. A statistical procedure is proposed to estimate expectation value and variance of the future energy consumption of buildings in case of refurbishment, as a supplement to standard calculations in EPCs for example. Prerequisite is that for a sufficient number of buildings, data on both, measured energy consumption and calculated demand, are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The Goldfeld-Quandt-Test compares sample-variances s2 of two subsamples, e.g. s2low of the lower and s2up of the upper half of the observations. If s2low / s2up > Fcrit, a critical value of the F-distibution, then a sample is considered heteroscedastic.

  2. Here A means the area of the building envelope in m2 and Ve the enclosed volume in m3.

References

  • K. Backhaus, K. et al. (2005): Multivariate Analysemethoden – Eine anwendungsorientierte Einführung, Springer-Verlag, Berlin 2005, 11. Auflage.

  • Brohus, H., & Heiselberg, P. (2009). Application of partial safety factors in building energy performance assessment (pp. 1014–1021). Glasgow: Eleventh International IBPSA Conference.

  • Building Research Establishment Ltd. (2013): Energy follow-up survey 2011—report 2: mean household temperatures, BRE report number 283078 prepared by BRE on behalf of the Department of Energy and Climate Change (DECC),UK, December 2013.

  • Manfred Casties (1997): Untersuchung zum Zusammenhang zwischen Nutzerverhalten und Heizenergieverbrauch, -bedarf von Wohngebäuden; Verlag für Wissenschaft und Forschung, Berlin 1997.

  • Chari, A., Xanthos, S., & Christodoulou, S. (2017). Stochastic assessment of the energy performance of buildings, S.E. In Energy efficiency (Vol. 10, pp. 1573–1591). https://doi.org/10.1007/s12053-017-9545-0.

    Google Scholar 

  • Corrado, V., & Mechri, H. E. (2009). Uncertainty and sensitivity analysis for building energy rating. Journal of Building Physics, 33(2), 125–156.

    Article  Google Scholar 

  • DIN Deutsches Institut für Normung e.V.: DIN V 18599: 2016-10 Energy efficiency of buildings—calculation of the net, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting, Beuth Verlag, Berlin 2016.

  • DIN Deutsches Institut für Normung e.V.: DIN V 18599-10: 2011-12 Energy efficiency of buildings—calculation of the net, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting - Part 10: boundary conditions of use, climatic data, Beuth Verlag, Berlin 2011.

  • Hans Erhorn (2007): Bedarf – Verbrauch: Ein Reizthema ohne Ende oder die Chance für sachliche Energieberatung?, Fraunhofer-Institut für Bauphysik, Stuttgart (available at: http://www.buildup.eu/sites/default/files/Manuskript_Messe_Bau_2007_Erhorn_Bedarf-Verbrauch_15_01_07_p.pdf).

  • Alicia Graf (2016): Analyse des Energieverbrauchs wärmetechnisch modernisierter Mehrfamilienhäuser - Entwicklung von Verbrauchsbenchmarks zur Beurteilung der Energieeffizienz, Masterthesis Institut für Massivbau, Technische Universität Darmstadt, 2016, S. 38–43.

  • Edelgard Gruber et al. (2005): Energiepass für Gebäude – Evaluation des Feldversuchs. Schlussbericht an die Deutsche Energie-Agentur, Karlsruhe 2005.

  • Michael Hörner et al. (2014a): Teilenergiekennwerte – Neue Wege in der Energieanalyse von Nichtwohngebäuden im Bestand, IWU 05/14, ISBN 978–3–941140-38-7.

  • Michael Hörner, Jens Knissel et. al. (2014b): Berechnungsgrundlagen des TEK-Tools Version TEK 6.2, IWU 03/14, Darmstadt 2014, ISBN 978-3-941140-36-3 (TEK-Tool (V 6.3-DB4.34), downloadable at http://www.iwu.de/forschung/energie/laufend/teilenergiekennwerte-von-nicht-wohngebaeuden/).

  • Jens Knissel et al. (2006): Vereinfachte Ermittlung von Primärenergiekennwerten – zur Bewertung der wärmetechnischen Beschaffenheit in ökologischen Mietspiegeln, IWU, Darmstadt 2006 (available at http://www.iwu.de/fileadmin/user_upload/dateien/energie/werkzeuge/ Vereinfachte_Ermittlung_von_Primaerenergiekenwerten-1.0.pdf).

  • Le gouvernement du grand-duché de Luxembourg (2007): Règlement grand-ducal du 30 novembre 2007 concernant la performance énergétique des bâtiments d’habitation (14.12.2007). Luxembourg : Service central de legislation.

  • Markus Lichtmeß (2012): Forschungsprojekt Gebäudedatenbank und Plausibilitätscheck im LuxEeB-Tool, interne Ergebnisse, Goblet Lavandier & Associés Luxemburg.

  • Loga, T. et al. (2003): Der Einfluss des Gebäudestandards und des Nutzerverhaltens auf die Heizkosten, IWU on behalf of Viterra Energy Services AG, Essen, 2003, Page 50.

  • Santos Silva, A., & Ghisi, E. (2014). Uncertainty analysis of user behaviour and physical parameters in residential building performance simulation. Energy and Buildings, 76, 381–391, ISSN 0378-7788. https://doi.org/10.1016/j.enbuild.2014.03.001.

    Article  Google Scholar 

  • Franz Schröder (2017): Note, METRONA Wärmemesser Union GmbH, München, 2017.

  • Franz Schröder et al. (2014): Reale Trends des spezifischen Energieverbrauchs und repräsentativer Wohnraumtemperierung bei steigendem Modernisierungsgrad im Wohnungsbestand, Bauphysik 36 (2014), Heft 6, p. 309 - 324.

  • Sunikka-Blank, M., & Galvin, R. (2012). Introducing the prebound effect: the gap between performance and actual energy consumption. Building Research & Information, 40(3), 260–273.

    Article  Google Scholar 

  • Jeffrey M. Wooldridge (2003): Introductory econometrics: a modern approach, 2e, Thomson learning – South-Western, Mason, Ohio 45040, USA, p. 305 ff., 503 ff.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hörner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hörner, M., Lichtmeß, M. Energy performance of buildings: A statistical approach to marry calculated demand and measured consumption. Energy Efficiency 12, 139–155 (2019). https://doi.org/10.1007/s12053-018-9664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-018-9664-2

Keywords

Navigation