Abstract
The general consensus is that 3D-printing technologies can help to render industrial production more sustainable, e.g. by shortening process chains, allowing more efficient production processes or providing benefits resulting from light-weight construction. This paper aims to quantify the impact of additive manufacturing processes on energy demand by examining selective laser sintering (SLS). To this end, a model is suggested and applied that focuses on three important phases in the life cycle of additively manufactured components and that allows a comparison with conventional manufacturing processes. The three phases considered are the production of the required raw material, the actual manufacturing process of specific components and their utilisation. The analysis focuses on the automotive and aircraft industries. The main factors influencing energy demand are analysed and discussed, and the impact of additive manufacturing is estimated on a national level for a sample component based on Germany as an example. The results indicate that substantial energy savings can be achieved, even though only a small component was replaced.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- e 1 :
-
specific energy demand for EAF metal smelting and refining [MJ/kg]
- e 2 :
-
specific energy demand for smelting process [MJ/kg]
- e 3 :
-
specific energy demand for casting and processing [MJ/kg]
- e 4, gas :
-
specific energy demand for the (gas) atomising process [MJ/kg]
- △T i :
-
material-specific temperature difference [K]
- c i :
-
material-specific heat capacity [MJ/(kg·K)]
- δ i :
-
specific smelting enthalpy [MJ/kg]
- α :
-
mark-up factor for real-world demand [no dimension]
- e sub :
-
specific energy demand for the conventional production route [MJ/kg]
- e dir :
-
specific energy demand for the direct additive route [MJ/kg]
- e ind :
-
specific energy demand for the indirect additive route [MJ/kg]
- p sub :
-
power demand per metal removal [MJ/mm3]
- V blk :
-
volume of metal block for conventional processes [mm3]
- V com :
-
volume of the target component [mm3]
- h com :
-
height of the component [mm]
- h lay :
-
thickness of an additively manufactured layer [mm]
- β :
-
mark-up factor for adjusting to real-world building rate [no dimension]
- r add :
-
material specific volume building rate [mm3/s]
- P add :
-
power demand for system operation [W]
- t lay :
-
time for mechanical movements per layer (lifting table, powder distribution) [s]
- t mec :
-
total time for mechanical movements of lifting table and powder distribution [s]
- t con :
-
time for building the component [s]
- E add :
-
energy demand for a specific component using additive processes [J]
- E sub :
-
energy demand for a specific component using conventional processes [J]
- a con :
-
annual energy demand for product usage [J/a]
- γ :
-
average product life span [a]
- θ :
-
pre-factor for alterations in product shape impacting on energy demand [no dimension]
- Δg :
-
weight difference of additively and conventionally manufactured products [g]
- A sub :
-
energy demand in utilisation of conventionally produced final product [J]
- A add :
-
energy demand in utilisation of an additively produced final product [J]
- a wgt :
-
annual energy savings per unit of weight [J/(a·g)]
References
AGEB (2015). AG Energiebilanzen. Auswertungstabellen zur Energiebilanz der Bundesrepublik Deutschland 1990 bis 2014. Berlin.
Airbus (2015). Airbus in Germany. Online: http://www.airbus.com/company/worldwide-presence/airbus-in-germany/. Accessed: 07.03.2016.
ASTM. (2012). F2792 - 12a: Standard terminology for additive manufacturing technologies. West Conshohocken: ASTM International.
AZO Materials (2014). Titanium alloys—Ti6Al4V grade 5 properties. Online: http://www.azom.com/properties.aspx?ArticleID=1547. Accessed 27.01.2016.
Balogun, V. A., & Mativenga, P. T. (2013). Modelling of direct energy requirements in mechanical machining processes. Journal of Cleaner Production, 41, 179–186. https://doi.org/10.1016/j.jclepro.2012.10.015
Baumers, M. (2012). Economic aspects of additive manufacturing: Benefits, costs and energy consumption. Loughborough: Ph.D. thesis, Loughborough University.
Baumers, M., Tuck, C., Hague, R., Ashcroft, I., & Wildman, R. (2010). A comparative study of metallic additive manufacturing power consumption. In: Proceedings of the Solid Freeform Fabrication Symposium 2010, Austin, USA. Vol. 2009, pp. 278–288.
Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., & Hague, R. (2011). Energy inputs to additive manufacturing: Does capacity utilization matter? In: Solid Freeform Fabrication (SFF) Symposium, 6–8 August, Austin, TX, USA.
Bello, M. (2014). New NIST research center helps the auto industry lighten up. Online: http://nist.gov/lightweighting/ncalfeature.cfm. Accessed 20.02.2016.
Berger, R. (2013). Additive manufacturing. A game changer for the manufacturing industry? Munich: Roland Berger Strategy Consultants.
Boeing (2006). Aero magazine. Quarter 04 (24). Online: http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/AERO_Q406.pdf. Accessed 04.03.2016.
Bopp, F. (2010). Rapid manufacturing. Zukünftige Wertschöpfungsmodelle durch generative Fertigungsverfahren. Online: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10489363. Accessed 03.03.2016.
Davis, J. R., American Society for Metals., & ASM Handbook Committee. (1989). Machining. Metals Park: ASM International.
Ducker Worldwide (2014). 2015 North American Light Vehicle Aluminum Content Study. Executive Summary. Online: http://www.aluminumintransportation.org/research-resources/PDF/Research/2014/2014-ducker-report. Accessed 10.03.2017.
EOS (2014). Werkstoffe - EOS Metall-Pulverwerkstoffe. Online: http://www.eos.info/werkstoffe-m. Accessed 08.02.2016.
European Commission. (2011). A roadmap for moving to a competitive low carbon economy in 2050. Brussel: European Commission.
Eurotransport (2017). Technische Daten. Online: http://www.eurotransport.de/test/1/9/3/9/0/2/7/technische_daten.pdf. Accessed 06.03.2017.
Forsberg, D. (2015). Aircraft retirement and storage trends—economic life analysis reprised and expanded. Ballsbridge: Holdings Limited.
Fraunhofer, I. W. U. (2008). Energieeffizienz in der Produktion. München: Untersuchung zum Handlungs- und Forschungsbedarf.
Gausemeier, J., Echterhoff, N., Kokoschka, M., & Wall, M. (2011). Thinking ahead the future of additive manufacturing. Analysis of promising industries. Paderborn: Study for the Direct Manufacturing Research Center.
Gebhardt, A. (2013). Generative Fertigungsverfahren—additive manufacturing (4th ed.). München: Carl Hanser Verlag. https://doi.org/10.3139/9783446436527
Gebler, M., Schoot Uiterkamp, A. J. M., & Visser, C. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74, 158–167. https://doi.org/10.1016/j.enpol.2014.08.033
Grassl, W. (2015). Additive manufacturing. Revolutioniert der 3D-Druck die Supply Chain und das Geschäftsmodell der Unternehmen? Online: https://www.kpmg.com/DE/de/Documents/fokusanalyse-additive-manufacturing-2015-kpmg.pdf. Accessed 19.12.2015.
Helms, H., & Lambrecht, U. (2007). The potential contribution of light-weighting to reduce transport energy consumption. International Journal of Life Cycle Assessment, 12(1), 58–64.
Hopkinson, N., & Dicknes, P. (2003). Analysis of rapid manufacturing—using layer manufacturing processes for production. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1), 31–39.
Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J., & Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559–1570.
Kellens, K. (2013). Energy and resource efficient manufacturing - Unit process analysis and ptimisation. PhD Dissertation, Department of Mechanical Engineering, KU Leuven.
Kempen, K., Thijs, L., van Humbeeck, J., & Kruth, J.-P. (2012). Mechanical properties of AlSi10Mg produced by selective laser melting. Physics Procedia, 39, 439–446. https://doi.org/10.1016/j.phpro.2012.10.059
Kraftfahrt-Bundesamt (2015a). 14.259 Kilometer: Die jährliche Fahrleistung deutscher Pkw. Pressemitteilung Nr. 15/2015. Online: https://www.kba.de/SharedDocs/Pressemitteilungen/DE/2015/pm_15_15_jaehrliche_fahrleistung_deutscher_pkw_pdf.pdf?__blob=publicationFile&v=5. Accessed 10.03.2017.
Kraftfahrt-Bundesamt (2015b). Bestand nach ausgewählten Fahrzeugklassen mit dem Durchschnittsalter der Fahrzeuge am 1. Januar 2015. Online: http://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Fahrzeugalter/2015/2015_b_fahrzeugalter_kfz_dusl.html. Accessed 06.03.2016.
Kraftfahrt-Bundesamt (2016). Anzahl der gemeldeten Pkw in Deutschland in den Jahren 1960 bis 2015, 2016. Online: http://de.statista.com/statistik/daten/studie/12131/umfrage/pkw-bestand-in-deutschland/. Accessed 23.02.2016.
Kruzhanov, V., & Arnhold, V. (2013). Energy consumption in powder metallurgical manufacturing. Powder Metallurgy, 55(1), 14–21.
Le Bourhis, F., Kerbrat, O., Hascoet, J.-Y., & Mognol, P. (2013). Sustainable manufacturing. Evaluation and modeling of environmental impacts in additive manufacturing. The International Journal of Advanced Manufacturing Technology, 69(9–12), 1927–1939. https://doi.org/10.1007/s00170-013-5151-2
Levy, G., Schindel, R., & Kruth, J. P. (2003). Rapid manufacturing and rapid tooling with layer manufacturing technologies, state of the art and future perspectives. CIRP Annals – Manufacturing Technology, 55(2), 539–609.
Luo, Y., Ji, Z., Leu, M. C., Caudill, R. (Eds.) (1999). Environmental performance analysis of solid freedom fabrication processes. In: Electronics and the Environment, 1999. ISEE-1999. Proceedings of the 1999 I.E. International Symposium on. IEEE, 1999. pp. 1–6.
Markets and Markets (2014). Additive manufacturing & material market by technology, by material (plastics, metals, and ceramics), by application, and by geography. Analysis & Forecast to 2014–2020. Pune.
Marquardt, E. (2014). VDI Statusreport September 2014. Additive Fertigungsverfahren. Düsseldorf: VDI-Verlag.
McAlister, C., & Wood, J. (2014). The potential of 3D printing to reduce the environmental impacts of production. In: Proceeding of the ECEEE 2014 Industrial Summer Study, Vol. 72 (pp. 213–221). https://www.eceee.org/library/conference_proceedings/eceee_Industrial_Summer_Study/2014/2-sustainable-production-design-and-supply-chain-initiatives/the-potential-of-3d-printing-to-reduce-the-environmental-impacts-of-production/. Accessed 22 Feb 2018.
McCullough, W. P., Graves, R., Hiseada, M., & Webb, C. (2016). Additive manufacturing power consumption. The International Journal of Advanced Manufacturing Technology, 2013, 67(5–8), 1191–1203.
Meindl, M. (2006). Beitrag zur Entwicklung generativer Fertigungsverfahren für das Rapid Manufacturing. Dissertation. Munich.
Mognol, P., Lepicart, D., & Perry, N. (2006). Rapid prototyping: energy and environment in the spotlight. Rapid Prototyping Journal, 12(1), 26–34. https://doi.org/10.1108/13552540610637246
Morrow, W. R., Qi, H., Kim, I., Mazumder, J., & Skerlos, S. J. (2007). Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, 15(10), 932–943. https://doi.org/10.1016/j.jclepro.2005.11.030
Müller, A. (2014). Trends in der additiven Fertigung, Teil 2 (Inventor Magazin). Online: http://www.inventor-magazin.de/trends-der-additiven-fertigung-teil-2-nikolai-zaepernick-eos. Accessed 11.01.2016.
Owens, J. W. (1997). Life-cycle assessment: constraints on moving from inventory to impact assessment. Journal of Industrial Ecology, 1(1), 37–49. https://doi.org/10.1162/jiec.1997.1.1.37
Schifo, J. F., & Radia, J. T. (2004). Theoretical/best practice energy use in metalcasting operations. Washington, DC: U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy.
Schubert, T., & Weissgärber, T. (2015). Powder metallurgy aluminium components offer lightweight solutions and high volume production. Powder Metallurgy Review, 4, 37–42.
Smith, B. (2003). The Boeing 777. Advanced Materials and Processes, 161(9), 41–44.
Sreenivasan, R., Goel, A., & Bourell, D. L. (2010). Sustainability issues in laser-based additive manufacturing. Physics Procedia, 5, 81–90. https://doi.org/10.1016/j.phpro.2010.08.124
Statista (2017a). Anzahl der produzierten Lastkraftwagen (Lkw) in Deutschland in den Jahren 2014 bis 2024. Online: https://de.statista.com/statistik/daten/studie/480307/umfrage/lkw-produktion-deutschland-prognose. Accessed 02.03.2017.
Statista (2017b). Durchschnittliches Gewicht neu zugelassener Personenkraftwagen ausgewählter Hersteller in Europa im Jahr 2014. Online: https://de.statista.com/statistik/daten/studie/238004/umfrage/gewicht-von-pkw-nach-autoherstellern/. Accessed 02.03.2017.
Telenko, C., & Seepersad, C. C. (2011). A comparative evaluation of energy consumption of selective laser sintering and injection molding of nylon parts. Rapid Prototyping Journal, 18, 472–481.
Tuck, C., & Hague, R. (2006) Management and implementation of rapid manufacturing. In:Rapid manufacturing (pp. 159–173). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470033991.ch10.
VDA (2015). Zahlen zur Automobilproduktion im In- und Ausland. Online: https://www.vda.de/de/services/zahlen-und-daten/jahreszahlen/automobilproduktion. Accessed 10.02.2016.
VDI (2014). Additive Fertigungsverfahren. Grundlagen, Begriffe, Verfahrensbeschreibungen. Düsseldorf: VDI-Verlag (VDI-Richtlinie 3405). Online: http://www.vdi.de/presse/artikel/rapid-manufacturing- potenziale-der-neuen-technologie-nutzen. Accessed 02.02.2016.
Wohlers Associates, Inc. (2012). Wohlers Report 2012. Additive manufacturing and 3D printing state of the industry. Annual Worldwide Progress Report. Fort Collins.
Yoon, H.-S., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Kim, E.-S., Shin, Y.-J., Chu, W. S., & Ahn, S. H. (2014). A comparison of energy consumption in bulk forming, subtractive, and additive processes. Review and case study. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 261–279. https://doi.org/10.1007/s40684-014-0033-0
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Hettesheimer, T., Hirzel, S. & Roß, H.B. Energy savings through additive manufacturing: an analysis of selective laser sintering for automotive and aircraft components. Energy Efficiency 11, 1227–1245 (2018). https://doi.org/10.1007/s12053-018-9620-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12053-018-9620-1