Skip to main content
Log in

Residential photovoltaic self-consumption: Identifying representative household groups based on a cluster analysis of hourly smart-meter data

Energy Efficiency Aims and scope Submit manuscript

Cite this article


The on-site generation and direct consumption of electricity, so-called self-consumption, with a combined photovoltaic (PV) and battery storage system is becoming increasingly profitable for private households. The profitability of PV self-consumption system largely depends on the match of PV output and the household’s electricity consumption. In energy system modelling, the household’s consumption behaviour is represented by means of a standard load profile. However, the household sector’s heterogeneity is not reflected in one single profile, and the use of only one load profile results in a misjudgement of the profitability of self-consumption. In this study, we present a set of representative household groups that better represent the heterogeneous residential consumption behaviour. The household groups were compiled through the cluster analysis of smart-meter data based on hourly electricity consumption, using household characteristics as explanatory variables. Between the average load profiles of the groups, significant differences were found. Subsequently to the clustering, self-consumption based on a combined PV and battery system was simulated for each household. We found that the achievable level of self-consumption also differs between the groups, which in turn affect the profitability of the PV and battery systems. A statistical analysis revealed that employment and the presence of children are distinguishing factors for the different types of self-consumers. These results suggest that (i) the residential sector is not well represented by a single standard load profile, particularly so in the context of self-consumption modelling. (ii) Different self-consumer types can be identified through socio-demographic characteristics: We found that unemployed households achieve the highest self-sufficiency rates with an average of 40%, the lowest rates with 30% on average occur within households of educated families. (iii) Although the discrepancies are significant, the effect of these differences on profitability is still limited under the current market conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. According to Meier et al. (1999), the winter period in Germany is defined as lasting from 1 November until 20 March, and the summer period from 15 May until 14 September and the transition period is the time between summer and winter.

  2. According to our findings and Meier et al. (1999), the differences between individual days are minor compared to the differences between weekdays and weekends.

  3. Examples are the companies “Caterva” in Germany and “Ampard” in Switzerland


  • Azad, S., Ali, A., & Wolfs, P. (2014). Identification of typical load profiles using k-means clustering algorithm, Computer Science and Engineering (APWC on CSE), 2014 Asia-Pacific World Congress on. IEEE, 2014. S, pp. 1–6.

  • BDEW. (2010). Energie-Info. Berlin: Energieverbrauch im Haushalt. BDEW-Datenkatalog.

    Google Scholar 

  • BDEW. (2016). BDEW-Strompreisanalysen Mai 2016. Berlin: Haushalte und Industrie.

    Google Scholar 

  • Bossmann, T., Pfluger, B., & Wietschel, M. (2013). The shape matters! How structural changes in the electricity load curve affect optimal investments in generation capacity, 10th international conference on the European Energy Market (EEM), Stockholm.

  • Bode, S., Grooscurth, H. (2013). Zur vermeintlichen “Grid Parity” von Photovoltaik-Anlagen, energiewirtschaftliche Tagesfragen 2013, H. 7, p. 39–43.

  • Breyer, C., & Gerlach, A. (2013). Global overview on grid-parity. Prog. Photovolt: Res. Appl., 21, 121–136.

    Article  Google Scholar 

  • Bruch, M., & Müller, M. (2014). Calculations of the cost-effectiveness of a PV battery system. Energy Procedia, 46, 262–270.

    Article  Google Scholar 

  • Bundesnetzagentur (2016). Datenmeldungen und EEG-Vergütungssätze für Photovoltaikanlagen. Accessed 19.10.16.

  • Campoccia, A., Dusonchet, L., Telaretti, E., & Zizzo, G. (2013). An analysis of feed’in tariffs for solar PV in six representative countries of the European Union. Solar Energy, 107, 530–542.

    Article  Google Scholar 

  • Carmo, C., & Christensen, T. (2016). Cluster analysis of residential heat load profiles and the role of technical and household characteristics. Energy and Buildings, 125, 171–180.

    Article  Google Scholar 

  • DWD (2016). Climate Data Centers (CDC) of the German Meteorological Service. Accessed 25.7.2016.

  • Elsland, R., T. Boßmann, A.-L. Klingler, N. Friedrichsen, & M. Klobasa (2015). Mittelfristprognose zur Deutschland-weiten Stromabgabe an Letztverbraucher für die Kalenderjahre 2016 bis 2020. Fraunhofer ISI. Study commissioned by the German Transmission Grid Operators.

  • EU Commission (2015). Best practices on renewable energy self-consumption, SWD 141 final, Brussels.

  • Fahrmeir, L., Kneib, T., & Lang, S. (2009). Regression–Modelle, Methoden und Anwendungen. Berlin Heidelberg: Springer.

    MATH  Google Scholar 

  • Flath, C., Nicolay, D., Conte, T., Dinther, C. V., & Filipova-Neumann, L. (2012). Cluster analysis of smart metering data–an implementation in Practice, BISE-Research paper, pp. 31–39.

    Article  Google Scholar 

  • Gerblinger, A., Finkel, M., Witzmann, R. (2014). Entwicklung und Evaluierung von neuen Standardlastprofilen für Haushaltskunden, 13. Symposium Energieinnovationen, Graz.

  • Gouveia, J., & Seixas, J. (2016). Unraveling electricity consumption profiles in households through clusters: combining smart meters and door-to-door surveys. Energy and Buildings, 116, 666–676.

    Article  Google Scholar 

  • Haben, S., Singleton, C., & Grindrod, P. (2016). Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Transactions on Smart Grid, 7(1), 136–144.

    Article  Google Scholar 

  • Hayn, M., Bertsch, V., & Fichtner, W. (2014). Electricity load profiles in Europe: the importance of household segmentation. Energy Research & Social Science, 3, 30–45.

    Article  Google Scholar 

  • Hinterstocker, M., Roon, S., & Rau, M. (2014). Bewertung der aktuellen Standardlastprofile österreichs und analyse zukünftiger Anpassungsmöglichkeiten im Strommarkt, 13. Symposium Energieinnovationen, Graz.

  • Hoppmann, J., Volland, J., Schmidt, T., & Hoffmann, V. (2014). The economic viability of battery storage for residential solar photovoltaic systems—a review and simulation model. Renewable and Sustainable Energy Reviews, 39, 1101–1118.

    Article  Google Scholar 

  • Intelliekon (2017). Website of the Intelliekon project with publications and presentations about the project. Accessed 12.4.2017.

  • Jägemann, C., Hagspiel, S., Lindenberger, D. (2013), The economic inefficiency of grid parity: the case of German PV, EWI Working Paper, No. 13/19.

  • Kairies, K., Haberschusz, D., Magnor, D., Leuthold, M., Badeda, J., & Sauer, D. (2015). Wissenschaftliches Mess- und Evaluierungsprogramm Solarstromspeicher. Jahresbericht 2015. Aachen: RWTH.

    Google Scholar 

  • Kavousian, A., Rajagopal, R., Fischer, M. (2013), Determinants of residential electricity conumption: using smart meter data to examine the effect of climate, building charachteristics, appliance stock, and occupants’ behavior. Energy, 55, 184–194.

    Article  Google Scholar 

  • Keitsch, K., Kondziella, H., Bruckner, T. (2016). Methodology for extracting dynamic standard load profiles from smart meter data, 14. Symposium Energieinnovationen, Graz.

  • Kim, Y. I., Shin, J. H., Song, J. J., & Yang, I. K. (2009). Customer clustering and TDLP (typical daily load profile) generation using the clustering algorithm. In Transmission & Distribution Conference & Exposition: Asia and Pacific, pp. 1–4, IEEE.

  • Klingler, A., & Marwitz, S. (2016). Can residential self-consumption contribute to load reduction in low-voltage grids? 14. Symposium energieinnovationen, Graz.

  • Klingler, A., Schuhmacher, F., & Wohlfarth, K. (2016). Identifying representative types of residential electricity consumers—a cluster analysis of hourly smart meter data, 4th European Conference on Behaviour and Energy Efficiency (Behave 2016), Coimbra.

  • Lund, P. (2015). Energy policy planning near grid parity using a price-driven technology penetration model. Technological Forecasting and Social Change, 90, 389–399.

    Article  Google Scholar 

  • Luthander, R., Widén, J., Munkhammar, J., & Lingfors, D. (2016). Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment. Energy, 112, 221–231.

    Article  Google Scholar 

  • May, N., & Neuhoff, K. (2016). Eigenversorgung mit Solarstrom—ein Treiber der Energiewende? DIW Roundup: Politik im Fokus, No. 89.

  • McLoughlin, F., Duffy, A., & Conlon, M. (2012). Characterising domestic electricity consumption patterns by dwelling and occupant socio-economoic variables: an Irish case study. Energy and Buildings, 48, 240–248.

    Article  Google Scholar 

  • Meier, H., Fünfgeld, C., Adam, T., & Schieferdecker, B. (1999), Repräsentative VDEW-Lastprofile, VDEW Materialien M-32/99, Frankfurt.

  • Moshövel, J., Kairies, K., Magnor, D., Leuthold, M., Bost, M., Gährs, S., Szczechowicz, E., Cramer, M., & Sauer, D. (2015). Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption. Applied Energy, 137, 567–575.

    Article  Google Scholar 

  • Munoz, L., Huijben, J., Verhees, B., & Verbon, G. (2014). The power of grid parity: a discursive approach. Technological Forecasting and Social Change, 87, 179–190.

    Article  Google Scholar 

  • Mutanen, A., Ruska, M., Repo, S., & Jarventausta, P. (2011). Customer classification and load profiling method for distribution systems. IEEE Transactions on Power Delivery, 26(3), 1755–1763.

    Article  Google Scholar 

  • Parra, D., Walkers, G., & Gillot, M. (2014). Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling. Sustainable Cities and Society, 10, 1–10.

    Article  Google Scholar 

  • Rhodes, J., Wesley, C., Upshaw, C., Edgar, T., & Webber, M. (2014). Clustering analysis of residential electricity demand profiles. Applied Energy, 135, 461–471.

    Article  Google Scholar 

  • Rodrigues, F., Duarte, J., Figueiredo, V., Vale, Z., & Cordeiro, M. (2003). A comparative analysis of clustering algorithms, applied to load profiling, Proceedings of MLDM, pp. 73–85, Leipzig.

  • Schleich, J., Brunner, M., Götz, K., Klobasa, M., Gölz, S., & Sunderer, G. (2011). Smart metering in Germany—results of providing feedback information in a field trial. ECEE Summer Study, 2011, 1667–1674.

    Google Scholar 

  • Schubert, G. (2012). Modelling hourly electricity generation from PV and wind plants in Europe, 9th international Conference on the European Energy Market (EEM), Florence.

  • Statistisches Bundesamt (2013). Wirtschaftsrechnungen–Einkommens- und Verbrauchsstichprobe Wohnverhältnisse privater Haushalte. Fachserie 15 Sonderheft 1. Wiesbaden.

  • Stenzel, P., Lissen, J., & Fleer, J. (2015). Impact of different load profiles on cost optimal system designs for battery supported PV systems, the 7th international conference on applied energy—ICAE2015. Energy Procedia, 75, 1862–1868.

    Article  Google Scholar 

  • Waffenschmidt, E. (2014). Dimensioning of decentralized photovoltaic storages with limited feed-in power and their impact on the distribution grid. Energy Procedia, 46, 78–87.

    Article  Google Scholar 

  • Weniger, J., Bergner, J., Tjaden, T., & Quaschning, V. (2015). Dezentrale Solarstromspeicher für die Energiewende. Berlin: Hochschule für Technik und Wirtschaft Berlin.

    Google Scholar 

  • Yohanis, Y., Mondol, J., Wright, A., Norton, B. (2008). Real-life energy use in the UK: how occupancy and dwelling characteristics affect domestic electricity use. Energy and Buildings, 40, 1053–1059.

    Article  Google Scholar 

  • Zhou, K., Yang, S., & Shen, C. (2013). A review of electric load classification in smart grid environment. Renewable and Sustainable Energy Reviews, 24, 103–110.

    Article  Google Scholar 

  • Zhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: From big data to big insights. Renewable and Sustainable Energy Review, 56, 215–225.

    Article  Google Scholar 

  • Zhou, K., Yang, S., & Shao, Z. (2017). Household monthly electricity consumption pattern mining: a fuzzy clustering-based model and a case study. Journal of Cleaner Production, 141, 900–908.

    Article  Google Scholar 

Download references


This work has been financially supported by the German Federal Ministry for Economic Affairs and Energy in the context of a project “Flexible Nachfrage als wichtiger Beitrag zur Energiewende und Baustein in der Energiesystemanalyse” as a part of the 6. Energieforschungsprogramm. Additionally, we would like to thank Tobias Fleiter, Jan Kersting and Katharina Wohlfarth for their input and valuable discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anna-Lena Klingler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klingler, AL., Schuhmacher, F. Residential photovoltaic self-consumption: Identifying representative household groups based on a cluster analysis of hourly smart-meter data. Energy Efficiency 11, 1689–1701 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: