Abstract
In the context of reducing household greenhouse gas emissions, in-home energy feedback displays have been trialled as a mechanism to assist households to monitor and change energy-use behaviour. As we move towards technology-rich zero-energy homes, the challenge of managing energy use and electricity generation systems will increase and a new role for in-home feedback displays may emerge. This paper describes the in-home display and monitoring systems installed in a near-net zero-energy residential estate and provides a summary of the energy-use data generated by the systems. It also draws on 25 in-depth interviews to discuss the residents’ attitudes towards, and experiences interacting with, the in-home feedback display and energy management system. Residents describe how the feedback displays assist them to understand their end-use energy behaviour, reduce net energy use and assess whether household appliances and renewable energy systems are operating correctly. The role of energy system fault identification is highlighted by many interviewees, where the feedback displays provide the means to monitor system performance, identify system failures and maintain low-energy-use outcomes.
Similar content being viewed by others
Notes
The star rating indicates the dwelling’s predicted annual heating and cooling requirement to maintain thermal comfort, which is determined by a computer program that considers the dwelling’s fabric and form, and assumed user behavioural patterns for a nominated climate year (see www.nathers.gov.au). A star rating of 10 means that that no external heating or cooling is required, whilst a star rating of 0 means that the building shell does practically nothing to reduce the discomfort of hot or cold weather.
References
Allen D, Janda K (2006). The effects of household characteristics and energy use consciousness on the effectiveness of real-time energy use feedback: a pilot study. Paper presented at the ACEEE Summer Study, California, USA.
Anderson, R., & Roberts, D. (2008). Maximizing residential energy savings: net zero energy home technology pathways. Golden: National Renewable Energy Laboratory.
Australian Bureau of Statistics (2012). Census of population and housing: basic community profiles—South Australia. Canberra: Commonwealth of Australia.
Australian Energy Market Commission (2013). Strategic priorities for energy market development. Sydney: Australian Energy Market Commission.
Bartram, L. (2015). Design challenges and opportunities for eco-feedback in the home. IEEE Computer Graphics and Applications, 35(4), 52–62. doi:10.1109/MCG.2015.69.
Berry, S. (2014). The technical and economic feasibility of applying a net zero carbon standard for new homes. Adelaide: University of South Australia.
Berry, S., Davidson, K., & Saman, W. (2013). The impact of niche green developments in transforming the building sector: the case study of Lochiel Park. Energy Policy, 62, 646–655. doi:10.1016/j.enpol.2013.07.067.
Berry, S., Whaley, D., Davidson, K., & Saman, W. (2014a). Do the numbers stack up? Lessons from a zero carbon housing estate. Renewable Energy, 67, 80–89. doi:10.1016/j.enpol.2014.05.011.
Berry, S., Whaley, D., Davidson, K., & Saman, W. (2014b). Near zero energy homes—what do users think? Energy Policy, 73, 127–137. doi:10.1016/j.enpol.2014.05.011.
Berry S, Whaley D, Saman W, Davidson K (2014c). Reaching to net zero energy: the recipe to create zero energy homes in warm temperate climates. Paper presented at the Sustainability in Energy and Buildings, Cardiff, UK, (pp. 25–27).
Bishop A (2008). Lochiel park case study. http://yourdevelopment.org/casestudy/view/id/7. Accessed 7/2/2012 2012.
Buchanan, K., Russo, R., & Anderson, B. (2014). Feeding back about eco-feedback: how do consumers use and respond to energy monitors? Energy Policy, 73, 138–146. doi:10.1016/j.enpol.2014.05.008.
Buchanan, K., Russo, R., & Anderson, B. (2015). The question of energy reduction: the problem(s) with feedback. Energy Policy, 77, 89–96. doi:10.1016/j.enpol.2014.12.008.
Burchell, K., Rettie, R., & Roberts, T. (2016). Householder engagement with energy consumption feedback: the role of community action and communications. Energy Policy, 88, 178–186. doi:10.1016/j.enpol.2015.10.019.
Carroll, J., Lyons, S., & Denny, E. (2014). Reducing household electricity demand through smart metering: the role of improved information about energy saving. Energy Economics, 45, 234–243. doi:10.1016/j.eneco.2014.07.007.
Chiang, T., Mevlevioglu, G., Natarajan, S., Padget, J., & Walker, I. (2014). Inducing [sub]conscious energy behaviour through visually displayed energy information: a case study in university accommodation. Energy and Buildings, 70, 507–515. doi:10.1016/j.enbuild.2013.10.035.
Darby, S. (2006). The effectiveness of feedback on energy consumption. Oxford: Environmental Change Institute, University of Oxford.
Darby, S. (2008). Energy feedback in buildings: improving the infrastructure for demand reduction. Building Research and Information, 36(5), 499–508. doi:10.1080/09613210802028428.
Darby, S. (2010). Smart metering: What potential for householder engagement? Building Research and Information, 38(5), 442–457. doi:10.1080/09613218.2010.492660.
Donaldson P, Bishop A, Wilson M (2008). Lochiel Park—a nation leading green village. Paper presented at the Eco City World Summit, San Francisco.
Edwards, J., & Pocock, B. (2011). Comfort, convenience and cost: the calculus of sustainable living at Lochiel Park. Adelaide: Centre for Work + Life, University of South Australia.
Ehrhardt-Martinez, K., Donnelly, K., & Laitner, S. (2010). Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities. Washington: American Council for an Energy-Efficient Economy.
European Commission (2010). Directive 2010/31/EU of the European Parliament and of the council on the energy performance of buildings. Brussels: European Commission.
Faruqui, A., Sergici, S., & Sharif, A. (2010). The impact of informational feedback on energy consumption: a survey of the experimental evidence. Energy, 35(4), 1598–1608. doi:10.1016/j.energy.2009.07.042.
Fischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79–104. doi:10.1007/s12053-008-9009-7.
Gölz, S., & Hahnel, U. (2016). What motivates people to use energy feedback systems? A multiple goal approach to predict long-term usage behaviour in daily life. Energy Research & Social Science, 21, 155–166. doi:10.1016/j.erss.2016.07.006.
Guy, S. (2006). Designing urban knowledge: competing perspectives on energy and buildings. Environment and Planning C: Government and Policy, 24(5), 645–659. doi:10.1068/c0607j.
Hargreaves, T., Nye, M., & Burgess, J. (2010). Making energy visible: a qualitative field study of how householders interact with feedback from smart energy monitors. Energy Policy, 38(10), 6111–6119.
Hargreaves, T., Nye, M., & Burgess, J. (2013). Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy, 52, 126–134. doi:10.1016/j.enpol.2012.03.027.
Houde, S., Todd, A., Sudarshan, A., Flora, J., & Armel, K. (2013). Real-time feedback and electricity consumption: a field experiment assessing the potential for savings and persistence. The Energy Journal, 34(1), 87–102. doi:10.5547/01956574.34.1.4.
Intergovernmental Panel on Climate Change (2014). Working group III—mitigation of climate change: technical summary. Geneva: Intergovernmental Panel on Climate Change.
International Energy Agency (2014). More data, less energy: making network standby more efficient in billions of connected devices. Paris: International Energy Agency.
Jackson, T. (2005). Motivating sustainable consumption: a review of evidence on consumer behaviour and behavioural change. Guildford: University of Surrey.
Janda, K. (2011). Buildings dont use energy: people do. Architectural Science Review, 54(1), 15–22.
Johnston, D., Lowe, R., & Bell, M. (2005). An exploration of the technical feasibility of achieving CO2 emission reductions in excess of 60 % within the UK housing stock by the year 2050. Energy Policy, 33(13), 1643–1659. doi:10.1016/j.enpol.2004.02.003.
Keirstead, J. (2007). Behavioural responses to photovoltaic systems in the UK domestic sector. Energy Policy, 35(8), 4128–4141. doi:10.1016/j.enpol.2007.02.019.
Krishnamurti, T., Davis, A., Wong-Parodi, G., Wang, J., & Canfield, C. (2013). Creating an in-home display: experimental evidence and guidelines for design. Applied Energy, 108, 448–458. doi:10.1016/j.apenergy.2013.03.048.
Land Management Corporation (2005). Lochiel Park Green Village development project: submission to public works committee (L. M. Corporation, trans.). Adelaide: Land Management Corporation.
Land Management Corporation (2009). Lochiel Park Urban Design Guidelines (Vol. 3). Adelaide: Land Management Corporation.
Levine, M., Urge-Vorsatz, D., Blok, K., Geng, L., Harvey, D., Lang, S., et al. (2007). Residential and commercial buildings. Climate change 2007; mitigation. Contribution of working group III to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.
Locke, E., & Latham, G. (2002). Building a practically useful theory of goal setting and task motivation: a 35-year odyssey. American Psychologist, 57(9), 705–717. doi:10.1037//0003-066X.57.9.705.
Lowe, R. (2007). Technical options and strategies for decarbonizing UK housing. Building Research and Information, 35(4), 412–425. doi:10.1080/09613210701238268.
Lutzenhiser, L. (1993). Social and behavioral aspects of energy use. Annual Review of Energy and the Environment, 18(1), 247–289.
Matthews, B., & Ross, L. (2010). Research methods: a practical guide for the social sciences (Vol. book, whole). Essex: Pearson Longman.
McKerracher, C., & Torriti, J. (2013). Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. [article]. Energy Efficiency, 6(2), 387–405. doi:10.1007/s12053-012-9169-3.
Miller W, Buys L. (2010). Householder experiences with resource monitoring technology in sustainable homes. Paper presented at the Proceedings of the 22nd conference of the computer-human interaction special interest group of Australia on computer-human interaction, Brisbane, Australia
Nilsson, A., Bergstad, C., Thuvander, L., Andersson, D., Andersson, K., & Meiling, P. (2014). Effects of continuous feedback on households’ electricity consumption: potentials and barriers. Applied Energy, 122, 17–23. doi:10.1016/j.apenergy.2014.01.060.
Organisation for Economic Co-operation and Development (2003). Environmentally sustainable buildings: challenges and policies (vol. book, whole). Paris: Organisation for Economic Co-operation and Development.
Saman, W., Whaley, D., Mudge, L., Halawa, E., & Edwards, J. (2011). The intelligent grid in a new housing development. In CSIRO (Ed.), Intelligent grid research cluster. Adelaide: University of South Australia.
Schipper, L., Bartlett, S., Hawk, D., & Vine, E. (1989). Linking life-styles and energy use: a matter of time? Annual Review of Energy, 14, 273–320.
Schleich, J., Klobasa, M., Gölz, S., & Brunner, M. (2013). Effects of feedback on residential electricity demand-findings from a field trial in Austria. [article]. Energy Policy, 61, 1097–1106. doi:10.1016/j.enpol.2013.05.012.
Schultz P, Estrada M, Schmitt J, Sokoloski R, Silva-Send N (2015). Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms. Energy, 90. doi:10.1016/j.energy.2015.06.130.
Schwartz, S. (1973). Normative explanations of helping behavior: a critique, proposal, and empirical test. Journal of Experimental Social Psychology, 9(4), 349–364. doi:10.1016/0022-1031(73)90071-1.
Shove, E. (2003). Users, technologies and expectations of comfort, cleanliness and convenience. Innovation: The European Journal of Social Science Research, 16(2), 193–206.
Simon, H. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99.
Snow, S., Vyas, D., & Brereton, M. (2015). When an eco-feedback system joins the family. Personal and Ubiquitous Computing. doi:10.1007/s00779-015-0839-y.
Stephenson, J., Barton, B., Carrington, G., Gnoth, D., Lawson, R., & Thorsnes, P. (2010). Energy cultures: a framework for understanding energy behaviours. Energy Policy, 38(10), 6120–6129.
Strengers, Y. (2008). Comfort expectations: the impact of demand-management strategies in Australia. Building Research and Information, 36(4), 381–391.
Strengers, Y. (2011). Negotiating everyday life: the role of energy and water consumption feedback. Journal of Consumer Culture, 11(3), 319–338.
Strengers, Y. (2014). Smart energy in everyday life: are you designing for resource man? Interactions, 21(4), 24–31. doi:10.1145/2621931.
Stromback, J., Dromacque, C., & Yassin, M. (2011). The potential of smart meter enabled programs to increase energy and systems efficiency: a mass pilot comparison. Helsinki: VaasaETT on behalf of the European Smart Metering Industry Group.
Ueno, T., Sano, F., Saeki, O., & Tsuji, K. (2006). Effectiveness of an energy-consumption information system on energy savings in residential houses based on monitored data. Applied Energy, 83(2), 166–183. doi:10.1016/j.apenergy.2005.02.002.
Van Dam, S., Bakker, C., & Van Hal, J. (2010). Home energy monitors: impact over the medium-term. Building Research and Information, 38(5), 458–469.
Vassileva, I., Dahlquist, E., Wallin, F., & Campillo, J. (2013). Energy consumption feedback devices’ impact evaluation on domestic energy use. Applied Energy, 106, 314–320. doi:10.1016/j.apenergy.2013.01.059.
Westskog, H., Winther, T., & Sæle, H. (2015). The effects of in-home displays-revisiting the context. Sustainability (Switzerland), 7(5), 5431–5451. doi:10.3390/su7055431.
Whaley D, Saman W, Halawa E, Mudge L. (2010). Lessons learnt from implementing intelligent metering and energy monitoring devices in a new housing development. Paper presented at the Solar 2010 Conference, Canberra.
Whaley D, Berry S, Saman W (2013). The impact of home energy feedback displays and load management devices in a low energy housing development. Paper presented at the Energy Efficiency in Domestic Appliances and Lighting Conference, Coimbra, Portugal.
Acknowledgments
The authors wish to acknowledge the support provided by Renewal SA and the residents of Lochiel Park. Finally, the authors also wish to thank Dr. Anne Sharp, University of South Australia, for her valuable advice and assistance in shaping the Lochiel Park residents’ interview design. All electronic and interview data used in this study has been gathered with the expressed permission of the residents.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Appendix 1
(DOCX 13 kb)
Rights and permissions
About this article
Cite this article
Berry, S., Whaley, D., Saman, W. et al. Finding faults and influencing consumption: the role of in-home energy feedback displays in managing high-tech homes. Energy Efficiency 10, 787–807 (2017). https://doi.org/10.1007/s12053-016-9489-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12053-016-9489-9