Skip to main content

Advertisement

Log in

Finding faults and influencing consumption: the role of in-home energy feedback displays in managing high-tech homes

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

In the context of reducing household greenhouse gas emissions, in-home energy feedback displays have been trialled as a mechanism to assist households to monitor and change energy-use behaviour. As we move towards technology-rich zero-energy homes, the challenge of managing energy use and electricity generation systems will increase and a new role for in-home feedback displays may emerge. This paper describes the in-home display and monitoring systems installed in a near-net zero-energy residential estate and provides a summary of the energy-use data generated by the systems. It also draws on 25 in-depth interviews to discuss the residents’ attitudes towards, and experiences interacting with, the in-home feedback display and energy management system. Residents describe how the feedback displays assist them to understand their end-use energy behaviour, reduce net energy use and assess whether household appliances and renewable energy systems are operating correctly. The role of energy system fault identification is highlighted by many interviewees, where the feedback displays provide the means to monitor system performance, identify system failures and maintain low-energy-use outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The star rating indicates the dwelling’s predicted annual heating and cooling requirement to maintain thermal comfort, which is determined by a computer program that considers the dwelling’s fabric and form, and assumed user behavioural patterns for a nominated climate year (see www.nathers.gov.au). A star rating of 10 means that that no external heating or cooling is required, whilst a star rating of 0 means that the building shell does practically nothing to reduce the discomfort of hot or cold weather.

References

  • Allen D, Janda K (2006). The effects of household characteristics and energy use consciousness on the effectiveness of real-time energy use feedback: a pilot study. Paper presented at the ACEEE Summer Study, California, USA.

  • Anderson, R., & Roberts, D. (2008). Maximizing residential energy savings: net zero energy home technology pathways. Golden: National Renewable Energy Laboratory.

    Book  Google Scholar 

  • Australian Bureau of Statistics (2012). Census of population and housing: basic community profiles—South Australia. Canberra: Commonwealth of Australia.

    Google Scholar 

  • Australian Energy Market Commission (2013). Strategic priorities for energy market development. Sydney: Australian Energy Market Commission.

    Google Scholar 

  • Bartram, L. (2015). Design challenges and opportunities for eco-feedback in the home. IEEE Computer Graphics and Applications, 35(4), 52–62. doi:10.1109/MCG.2015.69.

    Article  Google Scholar 

  • Berry, S. (2014). The technical and economic feasibility of applying a net zero carbon standard for new homes. Adelaide: University of South Australia.

    Google Scholar 

  • Berry, S., Davidson, K., & Saman, W. (2013). The impact of niche green developments in transforming the building sector: the case study of Lochiel Park. Energy Policy, 62, 646–655. doi:10.1016/j.enpol.2013.07.067.

    Article  Google Scholar 

  • Berry, S., Whaley, D., Davidson, K., & Saman, W. (2014a). Do the numbers stack up? Lessons from a zero carbon housing estate. Renewable Energy, 67, 80–89. doi:10.1016/j.enpol.2014.05.011.

    Article  Google Scholar 

  • Berry, S., Whaley, D., Davidson, K., & Saman, W. (2014b). Near zero energy homes—what do users think? Energy Policy, 73, 127–137. doi:10.1016/j.enpol.2014.05.011.

    Article  Google Scholar 

  • Berry S, Whaley D, Saman W, Davidson K (2014c). Reaching to net zero energy: the recipe to create zero energy homes in warm temperate climates. Paper presented at the Sustainability in Energy and Buildings, Cardiff, UK, (pp. 25–27).

  • Bishop A (2008). Lochiel park case study. http://yourdevelopment.org/casestudy/view/id/7. Accessed 7/2/2012 2012.

  • Buchanan, K., Russo, R., & Anderson, B. (2014). Feeding back about eco-feedback: how do consumers use and respond to energy monitors? Energy Policy, 73, 138–146. doi:10.1016/j.enpol.2014.05.008.

    Article  Google Scholar 

  • Buchanan, K., Russo, R., & Anderson, B. (2015). The question of energy reduction: the problem(s) with feedback. Energy Policy, 77, 89–96. doi:10.1016/j.enpol.2014.12.008.

    Article  Google Scholar 

  • Burchell, K., Rettie, R., & Roberts, T. (2016). Householder engagement with energy consumption feedback: the role of community action and communications. Energy Policy, 88, 178–186. doi:10.1016/j.enpol.2015.10.019.

    Article  Google Scholar 

  • Carroll, J., Lyons, S., & Denny, E. (2014). Reducing household electricity demand through smart metering: the role of improved information about energy saving. Energy Economics, 45, 234–243. doi:10.1016/j.eneco.2014.07.007.

    Article  Google Scholar 

  • Chiang, T., Mevlevioglu, G., Natarajan, S., Padget, J., & Walker, I. (2014). Inducing [sub]conscious energy behaviour through visually displayed energy information: a case study in university accommodation. Energy and Buildings, 70, 507–515. doi:10.1016/j.enbuild.2013.10.035.

    Article  Google Scholar 

  • Darby, S. (2006). The effectiveness of feedback on energy consumption. Oxford: Environmental Change Institute, University of Oxford.

    Google Scholar 

  • Darby, S. (2008). Energy feedback in buildings: improving the infrastructure for demand reduction. Building Research and Information, 36(5), 499–508. doi:10.1080/09613210802028428.

    Article  Google Scholar 

  • Darby, S. (2010). Smart metering: What potential for householder engagement? Building Research and Information, 38(5), 442–457. doi:10.1080/09613218.2010.492660.

    Article  Google Scholar 

  • Donaldson P, Bishop A, Wilson M (2008). Lochiel Park—a nation leading green village. Paper presented at the Eco City World Summit, San Francisco.

  • Edwards, J., & Pocock, B. (2011). Comfort, convenience and cost: the calculus of sustainable living at Lochiel Park. Adelaide: Centre for Work + Life, University of South Australia.

    Google Scholar 

  • Ehrhardt-Martinez, K., Donnelly, K., & Laitner, S. (2010). Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities. Washington: American Council for an Energy-Efficient Economy.

    Google Scholar 

  • European Commission (2010). Directive 2010/31/EU of the European Parliament and of the council on the energy performance of buildings. Brussels: European Commission.

    Google Scholar 

  • Faruqui, A., Sergici, S., & Sharif, A. (2010). The impact of informational feedback on energy consumption: a survey of the experimental evidence. Energy, 35(4), 1598–1608. doi:10.1016/j.energy.2009.07.042.

    Article  Google Scholar 

  • Fischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79–104. doi:10.1007/s12053-008-9009-7.

    Article  Google Scholar 

  • Gölz, S., & Hahnel, U. (2016). What motivates people to use energy feedback systems? A multiple goal approach to predict long-term usage behaviour in daily life. Energy Research & Social Science, 21, 155–166. doi:10.1016/j.erss.2016.07.006.

    Article  Google Scholar 

  • Guy, S. (2006). Designing urban knowledge: competing perspectives on energy and buildings. Environment and Planning C: Government and Policy, 24(5), 645–659. doi:10.1068/c0607j.

    Article  Google Scholar 

  • Hargreaves, T., Nye, M., & Burgess, J. (2010). Making energy visible: a qualitative field study of how householders interact with feedback from smart energy monitors. Energy Policy, 38(10), 6111–6119.

    Article  Google Scholar 

  • Hargreaves, T., Nye, M., & Burgess, J. (2013). Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy, 52, 126–134. doi:10.1016/j.enpol.2012.03.027.

    Article  Google Scholar 

  • Houde, S., Todd, A., Sudarshan, A., Flora, J., & Armel, K. (2013). Real-time feedback and electricity consumption: a field experiment assessing the potential for savings and persistence. The Energy Journal, 34(1), 87–102. doi:10.5547/01956574.34.1.4.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2014). Working group III—mitigation of climate change: technical summary. Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • International Energy Agency (2014). More data, less energy: making network standby more efficient in billions of connected devices. Paris: International Energy Agency.

    Google Scholar 

  • Jackson, T. (2005). Motivating sustainable consumption: a review of evidence on consumer behaviour and behavioural change. Guildford: University of Surrey.

    Google Scholar 

  • Janda, K. (2011). Buildings dont use energy: people do. Architectural Science Review, 54(1), 15–22.

    Article  Google Scholar 

  • Johnston, D., Lowe, R., & Bell, M. (2005). An exploration of the technical feasibility of achieving CO2 emission reductions in excess of 60 % within the UK housing stock by the year 2050. Energy Policy, 33(13), 1643–1659. doi:10.1016/j.enpol.2004.02.003.

    Article  Google Scholar 

  • Keirstead, J. (2007). Behavioural responses to photovoltaic systems in the UK domestic sector. Energy Policy, 35(8), 4128–4141. doi:10.1016/j.enpol.2007.02.019.

    Article  Google Scholar 

  • Krishnamurti, T., Davis, A., Wong-Parodi, G., Wang, J., & Canfield, C. (2013). Creating an in-home display: experimental evidence and guidelines for design. Applied Energy, 108, 448–458. doi:10.1016/j.apenergy.2013.03.048.

    Article  Google Scholar 

  • Land Management Corporation (2005). Lochiel Park Green Village development project: submission to public works committee (L. M. Corporation, trans.). Adelaide: Land Management Corporation.

    Google Scholar 

  • Land Management Corporation (2009). Lochiel Park Urban Design Guidelines (Vol. 3). Adelaide: Land Management Corporation.

    Google Scholar 

  • Levine, M., Urge-Vorsatz, D., Blok, K., Geng, L., Harvey, D., Lang, S., et al. (2007). Residential and commercial buildings. Climate change 2007; mitigation. Contribution of working group III to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.

    Google Scholar 

  • Locke, E., & Latham, G. (2002). Building a practically useful theory of goal setting and task motivation: a 35-year odyssey. American Psychologist, 57(9), 705–717. doi:10.1037//0003-066X.57.9.705.

    Article  Google Scholar 

  • Lowe, R. (2007). Technical options and strategies for decarbonizing UK housing. Building Research and Information, 35(4), 412–425. doi:10.1080/09613210701238268.

    Article  Google Scholar 

  • Lutzenhiser, L. (1993). Social and behavioral aspects of energy use. Annual Review of Energy and the Environment, 18(1), 247–289.

    Article  Google Scholar 

  • Matthews, B., & Ross, L. (2010). Research methods: a practical guide for the social sciences (Vol. book, whole). Essex: Pearson Longman.

    Google Scholar 

  • McKerracher, C., & Torriti, J. (2013). Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. [article]. Energy Efficiency, 6(2), 387–405. doi:10.1007/s12053-012-9169-3.

    Article  Google Scholar 

  • Miller W, Buys L. (2010). Householder experiences with resource monitoring technology in sustainable homes. Paper presented at the Proceedings of the 22nd conference of the computer-human interaction special interest group of Australia on computer-human interaction, Brisbane, Australia

  • Nilsson, A., Bergstad, C., Thuvander, L., Andersson, D., Andersson, K., & Meiling, P. (2014). Effects of continuous feedback on households’ electricity consumption: potentials and barriers. Applied Energy, 122, 17–23. doi:10.1016/j.apenergy.2014.01.060.

    Article  Google Scholar 

  • Organisation for Economic Co-operation and Development (2003). Environmentally sustainable buildings: challenges and policies (vol. book, whole). Paris: Organisation for Economic Co-operation and Development.

    Google Scholar 

  • Saman, W., Whaley, D., Mudge, L., Halawa, E., & Edwards, J. (2011). The intelligent grid in a new housing development. In CSIRO (Ed.), Intelligent grid research cluster. Adelaide: University of South Australia.

    Google Scholar 

  • Schipper, L., Bartlett, S., Hawk, D., & Vine, E. (1989). Linking life-styles and energy use: a matter of time? Annual Review of Energy, 14, 273–320.

    Article  Google Scholar 

  • Schleich, J., Klobasa, M., Gölz, S., & Brunner, M. (2013). Effects of feedback on residential electricity demand-findings from a field trial in Austria. [article]. Energy Policy, 61, 1097–1106. doi:10.1016/j.enpol.2013.05.012.

    Article  Google Scholar 

  • Schultz P, Estrada M, Schmitt J, Sokoloski R, Silva-Send N (2015). Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms. Energy, 90. doi:10.1016/j.energy.2015.06.130.

  • Schwartz, S. (1973). Normative explanations of helping behavior: a critique, proposal, and empirical test. Journal of Experimental Social Psychology, 9(4), 349–364. doi:10.1016/0022-1031(73)90071-1.

    Article  Google Scholar 

  • Shove, E. (2003). Users, technologies and expectations of comfort, cleanliness and convenience. Innovation: The European Journal of Social Science Research, 16(2), 193–206.

    Google Scholar 

  • Simon, H. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99.

    Article  Google Scholar 

  • Snow, S., Vyas, D., & Brereton, M. (2015). When an eco-feedback system joins the family. Personal and Ubiquitous Computing. doi:10.1007/s00779-015-0839-y.

    Google Scholar 

  • Stephenson, J., Barton, B., Carrington, G., Gnoth, D., Lawson, R., & Thorsnes, P. (2010). Energy cultures: a framework for understanding energy behaviours. Energy Policy, 38(10), 6120–6129.

    Article  Google Scholar 

  • Strengers, Y. (2008). Comfort expectations: the impact of demand-management strategies in Australia. Building Research and Information, 36(4), 381–391.

    Article  Google Scholar 

  • Strengers, Y. (2011). Negotiating everyday life: the role of energy and water consumption feedback. Journal of Consumer Culture, 11(3), 319–338.

    Article  Google Scholar 

  • Strengers, Y. (2014). Smart energy in everyday life: are you designing for resource man? Interactions, 21(4), 24–31. doi:10.1145/2621931.

    Article  Google Scholar 

  • Stromback, J., Dromacque, C., & Yassin, M. (2011). The potential of smart meter enabled programs to increase energy and systems efficiency: a mass pilot comparison. Helsinki: VaasaETT on behalf of the European Smart Metering Industry Group.

    Google Scholar 

  • Ueno, T., Sano, F., Saeki, O., & Tsuji, K. (2006). Effectiveness of an energy-consumption information system on energy savings in residential houses based on monitored data. Applied Energy, 83(2), 166–183. doi:10.1016/j.apenergy.2005.02.002.

    Article  Google Scholar 

  • Van Dam, S., Bakker, C., & Van Hal, J. (2010). Home energy monitors: impact over the medium-term. Building Research and Information, 38(5), 458–469.

    Article  Google Scholar 

  • Vassileva, I., Dahlquist, E., Wallin, F., & Campillo, J. (2013). Energy consumption feedback devices’ impact evaluation on domestic energy use. Applied Energy, 106, 314–320. doi:10.1016/j.apenergy.2013.01.059.

    Article  Google Scholar 

  • Westskog, H., Winther, T., & Sæle, H. (2015). The effects of in-home displays-revisiting the context. Sustainability (Switzerland), 7(5), 5431–5451. doi:10.3390/su7055431.

    Article  Google Scholar 

  • Whaley D, Saman W, Halawa E, Mudge L. (2010). Lessons learnt from implementing intelligent metering and energy monitoring devices in a new housing development. Paper presented at the Solar 2010 Conference, Canberra.

  • Whaley D, Berry S, Saman W (2013). The impact of home energy feedback displays and load management devices in a low energy housing development. Paper presented at the Energy Efficiency in Domestic Appliances and Lighting Conference, Coimbra, Portugal.

Download references

Acknowledgments

The authors wish to acknowledge the support provided by Renewal SA and the residents of Lochiel Park. Finally, the authors also wish to thank Dr. Anne Sharp, University of South Australia, for her valuable advice and assistance in shaping the Lochiel Park residents’ interview design. All electronic and interview data used in this study has been gathered with the expressed permission of the residents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Berry.

Electronic supplementary material

Appendix 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry, S., Whaley, D., Saman, W. et al. Finding faults and influencing consumption: the role of in-home energy feedback displays in managing high-tech homes. Energy Efficiency 10, 787–807 (2017). https://doi.org/10.1007/s12053-016-9489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-016-9489-9

Keywords

Navigation