Energy Efficiency

, Volume 10, Issue 4, pp 787–807 | Cite as

Finding faults and influencing consumption: the role of in-home energy feedback displays in managing high-tech homes

  • Stephen BerryEmail author
  • David Whaley
  • Wasim Saman
  • Kathryn Davidson
Original Article


In the context of reducing household greenhouse gas emissions, in-home energy feedback displays have been trialled as a mechanism to assist households to monitor and change energy-use behaviour. As we move towards technology-rich zero-energy homes, the challenge of managing energy use and electricity generation systems will increase and a new role for in-home feedback displays may emerge. This paper describes the in-home display and monitoring systems installed in a near-net zero-energy residential estate and provides a summary of the energy-use data generated by the systems. It also draws on 25 in-depth interviews to discuss the residents’ attitudes towards, and experiences interacting with, the in-home feedback display and energy management system. Residents describe how the feedback displays assist them to understand their end-use energy behaviour, reduce net energy use and assess whether household appliances and renewable energy systems are operating correctly. The role of energy system fault identification is highlighted by many interviewees, where the feedback displays provide the means to monitor system performance, identify system failures and maintain low-energy-use outcomes.


Feedback display Residential energy consumption Demand management Net zero-energy home 



The authors wish to acknowledge the support provided by Renewal SA and the residents of Lochiel Park. Finally, the authors also wish to thank Dr. Anne Sharp, University of South Australia, for her valuable advice and assistance in shaping the Lochiel Park residents’ interview design. All electronic and interview data used in this study has been gathered with the expressed permission of the residents.

Supplementary material

12053_2016_9489_MOESM1_ESM.docx (14 kb)
Appendix 1 (DOCX 13 kb)


  1. Allen D, Janda K (2006). The effects of household characteristics and energy use consciousness on the effectiveness of real-time energy use feedback: a pilot study. Paper presented at the ACEEE Summer Study, California, USA.Google Scholar
  2. Anderson, R., & Roberts, D. (2008). Maximizing residential energy savings: net zero energy home technology pathways. Golden: National Renewable Energy Laboratory.CrossRefGoogle Scholar
  3. Australian Bureau of Statistics (2012). Census of population and housing: basic community profiles—South Australia. Canberra: Commonwealth of Australia.Google Scholar
  4. Australian Energy Market Commission (2013). Strategic priorities for energy market development. Sydney: Australian Energy Market Commission.Google Scholar
  5. Bartram, L. (2015). Design challenges and opportunities for eco-feedback in the home. IEEE Computer Graphics and Applications, 35(4), 52–62. doi: 10.1109/MCG.2015.69.CrossRefGoogle Scholar
  6. Berry, S. (2014). The technical and economic feasibility of applying a net zero carbon standard for new homes. Adelaide: University of South Australia.Google Scholar
  7. Berry, S., Davidson, K., & Saman, W. (2013). The impact of niche green developments in transforming the building sector: the case study of Lochiel Park. Energy Policy, 62, 646–655. doi: 10.1016/j.enpol.2013.07.067.CrossRefGoogle Scholar
  8. Berry, S., Whaley, D., Davidson, K., & Saman, W. (2014a). Do the numbers stack up? Lessons from a zero carbon housing estate. Renewable Energy, 67, 80–89. doi: 10.1016/j.enpol.2014.05.011.CrossRefGoogle Scholar
  9. Berry, S., Whaley, D., Davidson, K., & Saman, W. (2014b). Near zero energy homes—what do users think? Energy Policy, 73, 127–137. doi: 10.1016/j.enpol.2014.05.011.CrossRefGoogle Scholar
  10. Berry S, Whaley D, Saman W, Davidson K (2014c). Reaching to net zero energy: the recipe to create zero energy homes in warm temperate climates. Paper presented at the Sustainability in Energy and Buildings, Cardiff, UK, (pp. 25–27).Google Scholar
  11. Bishop A (2008). Lochiel park case study. Accessed 7/2/2012 2012.
  12. Buchanan, K., Russo, R., & Anderson, B. (2014). Feeding back about eco-feedback: how do consumers use and respond to energy monitors? Energy Policy, 73, 138–146. doi: 10.1016/j.enpol.2014.05.008.CrossRefGoogle Scholar
  13. Buchanan, K., Russo, R., & Anderson, B. (2015). The question of energy reduction: the problem(s) with feedback. Energy Policy, 77, 89–96. doi: 10.1016/j.enpol.2014.12.008.CrossRefGoogle Scholar
  14. Burchell, K., Rettie, R., & Roberts, T. (2016). Householder engagement with energy consumption feedback: the role of community action and communications. Energy Policy, 88, 178–186. doi: 10.1016/j.enpol.2015.10.019.CrossRefGoogle Scholar
  15. Carroll, J., Lyons, S., & Denny, E. (2014). Reducing household electricity demand through smart metering: the role of improved information about energy saving. Energy Economics, 45, 234–243. doi: 10.1016/j.eneco.2014.07.007.CrossRefGoogle Scholar
  16. Chiang, T., Mevlevioglu, G., Natarajan, S., Padget, J., & Walker, I. (2014). Inducing [sub]conscious energy behaviour through visually displayed energy information: a case study in university accommodation. Energy and Buildings, 70, 507–515. doi: 10.1016/j.enbuild.2013.10.035.CrossRefGoogle Scholar
  17. Darby, S. (2006). The effectiveness of feedback on energy consumption. Oxford: Environmental Change Institute, University of Oxford.Google Scholar
  18. Darby, S. (2008). Energy feedback in buildings: improving the infrastructure for demand reduction. Building Research and Information, 36(5), 499–508. doi: 10.1080/09613210802028428.CrossRefGoogle Scholar
  19. Darby, S. (2010). Smart metering: What potential for householder engagement? Building Research and Information, 38(5), 442–457. doi: 10.1080/09613218.2010.492660.CrossRefGoogle Scholar
  20. Donaldson P, Bishop A, Wilson M (2008). Lochiel Park—a nation leading green village. Paper presented at the Eco City World Summit, San Francisco.Google Scholar
  21. Edwards, J., & Pocock, B. (2011). Comfort, convenience and cost: the calculus of sustainable living at Lochiel Park. Adelaide: Centre for Work + Life, University of South Australia.Google Scholar
  22. Ehrhardt-Martinez, K., Donnelly, K., & Laitner, S. (2010). Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities. Washington: American Council for an Energy-Efficient Economy.Google Scholar
  23. European Commission (2010). Directive 2010/31/EU of the European Parliament and of the council on the energy performance of buildings. Brussels: European Commission.Google Scholar
  24. Faruqui, A., Sergici, S., & Sharif, A. (2010). The impact of informational feedback on energy consumption: a survey of the experimental evidence. Energy, 35(4), 1598–1608. doi: 10.1016/ Scholar
  25. Fischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79–104. doi: 10.1007/s12053-008-9009-7.CrossRefGoogle Scholar
  26. Gölz, S., & Hahnel, U. (2016). What motivates people to use energy feedback systems? A multiple goal approach to predict long-term usage behaviour in daily life. Energy Research & Social Science, 21, 155–166. doi: 10.1016/j.erss.2016.07.006.CrossRefGoogle Scholar
  27. Guy, S. (2006). Designing urban knowledge: competing perspectives on energy and buildings. Environment and Planning C: Government and Policy, 24(5), 645–659. doi: 10.1068/c0607j.CrossRefGoogle Scholar
  28. Hargreaves, T., Nye, M., & Burgess, J. (2010). Making energy visible: a qualitative field study of how householders interact with feedback from smart energy monitors. Energy Policy, 38(10), 6111–6119.CrossRefGoogle Scholar
  29. Hargreaves, T., Nye, M., & Burgess, J. (2013). Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy, 52, 126–134. doi: 10.1016/j.enpol.2012.03.027.CrossRefGoogle Scholar
  30. Houde, S., Todd, A., Sudarshan, A., Flora, J., & Armel, K. (2013). Real-time feedback and electricity consumption: a field experiment assessing the potential for savings and persistence. The Energy Journal, 34(1), 87–102. doi: 10.5547/01956574.34.1.4.CrossRefGoogle Scholar
  31. Intergovernmental Panel on Climate Change (2014). Working group III—mitigation of climate change: technical summary. Geneva: Intergovernmental Panel on Climate Change.Google Scholar
  32. International Energy Agency (2014). More data, less energy: making network standby more efficient in billions of connected devices. Paris: International Energy Agency.Google Scholar
  33. Jackson, T. (2005). Motivating sustainable consumption: a review of evidence on consumer behaviour and behavioural change. Guildford: University of Surrey.Google Scholar
  34. Janda, K. (2011). Buildings dont use energy: people do. Architectural Science Review, 54(1), 15–22.CrossRefGoogle Scholar
  35. Johnston, D., Lowe, R., & Bell, M. (2005). An exploration of the technical feasibility of achieving CO2 emission reductions in excess of 60 % within the UK housing stock by the year 2050. Energy Policy, 33(13), 1643–1659. doi: 10.1016/j.enpol.2004.02.003.CrossRefGoogle Scholar
  36. Keirstead, J. (2007). Behavioural responses to photovoltaic systems in the UK domestic sector. Energy Policy, 35(8), 4128–4141. doi: 10.1016/j.enpol.2007.02.019.CrossRefGoogle Scholar
  37. Krishnamurti, T., Davis, A., Wong-Parodi, G., Wang, J., & Canfield, C. (2013). Creating an in-home display: experimental evidence and guidelines for design. Applied Energy, 108, 448–458. doi: 10.1016/j.apenergy.2013.03.048.CrossRefGoogle Scholar
  38. Land Management Corporation (2005). Lochiel Park Green Village development project: submission to public works committee (L. M. Corporation, trans.). Adelaide: Land Management Corporation.Google Scholar
  39. Land Management Corporation (2009). Lochiel Park Urban Design Guidelines (Vol. 3). Adelaide: Land Management Corporation.Google Scholar
  40. Levine, M., Urge-Vorsatz, D., Blok, K., Geng, L., Harvey, D., Lang, S., et al. (2007). Residential and commercial buildings. Climate change 2007; mitigation. Contribution of working group III to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.Google Scholar
  41. Locke, E., & Latham, G. (2002). Building a practically useful theory of goal setting and task motivation: a 35-year odyssey. American Psychologist, 57(9), 705–717. doi: 10.1037//0003-066X.57.9.705.CrossRefGoogle Scholar
  42. Lowe, R. (2007). Technical options and strategies for decarbonizing UK housing. Building Research and Information, 35(4), 412–425. doi: 10.1080/09613210701238268.CrossRefGoogle Scholar
  43. Lutzenhiser, L. (1993). Social and behavioral aspects of energy use. Annual Review of Energy and the Environment, 18(1), 247–289.CrossRefGoogle Scholar
  44. Matthews, B., & Ross, L. (2010). Research methods: a practical guide for the social sciences (Vol. book, whole). Essex: Pearson Longman.Google Scholar
  45. McKerracher, C., & Torriti, J. (2013). Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. [article]. Energy Efficiency, 6(2), 387–405. doi: 10.1007/s12053-012-9169-3.CrossRefGoogle Scholar
  46. Miller W, Buys L. (2010). Householder experiences with resource monitoring technology in sustainable homes. Paper presented at the Proceedings of the 22nd conference of the computer-human interaction special interest group of Australia on computer-human interaction, Brisbane, AustraliaGoogle Scholar
  47. Nilsson, A., Bergstad, C., Thuvander, L., Andersson, D., Andersson, K., & Meiling, P. (2014). Effects of continuous feedback on households’ electricity consumption: potentials and barriers. Applied Energy, 122, 17–23. doi: 10.1016/j.apenergy.2014.01.060.CrossRefGoogle Scholar
  48. Organisation for Economic Co-operation and Development (2003). Environmentally sustainable buildings: challenges and policies (vol. book, whole). Paris: Organisation for Economic Co-operation and Development.Google Scholar
  49. Saman, W., Whaley, D., Mudge, L., Halawa, E., & Edwards, J. (2011). The intelligent grid in a new housing development. In CSIRO (Ed.), Intelligent grid research cluster. Adelaide: University of South Australia.Google Scholar
  50. Schipper, L., Bartlett, S., Hawk, D., & Vine, E. (1989). Linking life-styles and energy use: a matter of time? Annual Review of Energy, 14, 273–320.CrossRefGoogle Scholar
  51. Schleich, J., Klobasa, M., Gölz, S., & Brunner, M. (2013). Effects of feedback on residential electricity demand-findings from a field trial in Austria. [article]. Energy Policy, 61, 1097–1106. doi: 10.1016/j.enpol.2013.05.012.CrossRefGoogle Scholar
  52. Schultz P, Estrada M, Schmitt J, Sokoloski R, Silva-Send N (2015). Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms. Energy, 90. doi:10.1016/ Scholar
  53. Schwartz, S. (1973). Normative explanations of helping behavior: a critique, proposal, and empirical test. Journal of Experimental Social Psychology, 9(4), 349–364. doi: 10.1016/0022-1031(73)90071-1.CrossRefGoogle Scholar
  54. Shove, E. (2003). Users, technologies and expectations of comfort, cleanliness and convenience. Innovation: The European Journal of Social Science Research, 16(2), 193–206.Google Scholar
  55. Simon, H. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99.CrossRefGoogle Scholar
  56. Snow, S., Vyas, D., & Brereton, M. (2015). When an eco-feedback system joins the family. Personal and Ubiquitous Computing. doi: 10.1007/s00779-015-0839-y.Google Scholar
  57. Stephenson, J., Barton, B., Carrington, G., Gnoth, D., Lawson, R., & Thorsnes, P. (2010). Energy cultures: a framework for understanding energy behaviours. Energy Policy, 38(10), 6120–6129.CrossRefGoogle Scholar
  58. Strengers, Y. (2008). Comfort expectations: the impact of demand-management strategies in Australia. Building Research and Information, 36(4), 381–391.CrossRefGoogle Scholar
  59. Strengers, Y. (2011). Negotiating everyday life: the role of energy and water consumption feedback. Journal of Consumer Culture, 11(3), 319–338.CrossRefGoogle Scholar
  60. Strengers, Y. (2014). Smart energy in everyday life: are you designing for resource man? Interactions, 21(4), 24–31. doi: 10.1145/2621931.CrossRefGoogle Scholar
  61. Stromback, J., Dromacque, C., & Yassin, M. (2011). The potential of smart meter enabled programs to increase energy and systems efficiency: a mass pilot comparison. Helsinki: VaasaETT on behalf of the European Smart Metering Industry Group.Google Scholar
  62. Ueno, T., Sano, F., Saeki, O., & Tsuji, K. (2006). Effectiveness of an energy-consumption information system on energy savings in residential houses based on monitored data. Applied Energy, 83(2), 166–183. doi: 10.1016/j.apenergy.2005.02.002.CrossRefGoogle Scholar
  63. Van Dam, S., Bakker, C., & Van Hal, J. (2010). Home energy monitors: impact over the medium-term. Building Research and Information, 38(5), 458–469.CrossRefGoogle Scholar
  64. Vassileva, I., Dahlquist, E., Wallin, F., & Campillo, J. (2013). Energy consumption feedback devices’ impact evaluation on domestic energy use. Applied Energy, 106, 314–320. doi: 10.1016/j.apenergy.2013.01.059.CrossRefGoogle Scholar
  65. Westskog, H., Winther, T., & Sæle, H. (2015). The effects of in-home displays-revisiting the context. Sustainability (Switzerland), 7(5), 5431–5451. doi: 10.3390/su7055431.CrossRefGoogle Scholar
  66. Whaley D, Saman W, Halawa E, Mudge L. (2010). Lessons learnt from implementing intelligent metering and energy monitoring devices in a new housing development. Paper presented at the Solar 2010 Conference, Canberra.Google Scholar
  67. Whaley D, Berry S, Saman W (2013). The impact of home energy feedback displays and load management devices in a low energy housing development. Paper presented at the Energy Efficiency in Domestic Appliances and Lighting Conference, Coimbra, Portugal.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Stephen Berry
    • 1
    Email author
  • David Whaley
    • 1
  • Wasim Saman
    • 1
  • Kathryn Davidson
    • 1
  1. 1.Barbara Hardy InstituteUniversity of South AustraliaAdelaideAustralia

Personalised recommendations