Skip to main content

Advertisement

Log in

Building energy consumption flatness-based control using algebraic on-line estimation

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

A new model-based on-line control of building energy consumption with no drawbacks related to the thermal model or the unplanned changes (occupation, exterior temperature, …) is presented in this paper. The main theoretical tools of this method are the flatness-based control and the recent new setting of numerical differentiation for fast and on-line parameter estimation. Indeed the estimation techniques form an added value in terms of the reliability of the thermal model. Furthermore, the main advantage of using the differential flatness control scheme is that the system behavior can be described by the trajectory of a so-called flat output and a number of its successive time derivatives. This leads to a simple design of the control strategy without the integration of any differential equations. Numerical simulations as well as comparative studies with a classical PID (proportional-integral-derivative) controller are provided to demonstrate the relevance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alhaj Hasan, O., Defer, D., & Shahrour, I (2014). A simplified building thermal model for the optimization of energy consumption: Use of a random number generator. Energy and Buildings, 82, 322–329.

    Article  Google Scholar 

  • Alhaj Hasan, O. (2014). Optimization of building energy consumption using simplified models and new control methods. France: PhD Thesis. Lille 1.

    Google Scholar 

  • Alhaj, O., Abouaissa, H., & Defer, D. (2015). On-line fast parametric estimation of building thermal behavior using algebraic methods. In 2015 IEEE International Conference on Building Efficiency and Sustainable Technologies (ICBEST2015), Singapore.

  • Ang, K.H., Chong, G., & Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4), 559–576.

    Article  Google Scholar 

  • Bălan, R., Cooper, J., Chao, K-M., Stan, S., & Donca, R. (2011). Parameter identification and model-based predictive control of temperature inside a house. Energy and Buildings, 43(2–3), 748–758.

    Article  Google Scholar 

  • Berthou, T., Stabat, P., Salvazet, R., & Marchio, D. (2012). Comparaison de modèles linéaires inverses pour la mise en place de stratégies d’effacement. X X X e Rencontre AUGCIBPSA. Savoie: Chambéry.

  • Carassus, J. (2006). Comparaison internationale bâtiment et énergie, Rapport intermédiaire, PREBAT, Programme de recherche et d’expérimentation sur l’énergie et le bâtiment. ADEME, CSTB, PUCA. Paris.

  • Cech, M., & Schlegel, M. (2011). Computing PID tuning regions based on fractional-order model set. In IFAC conference on advances in PID control.

  • Crabb, J.A., Murdoch, N., & Penman, J.M. (1987). A simplified thermal response model. Building Services Engineering Research and Technology, 8(1), 13–19. SAGE Publications.

    Article  Google Scholar 

  • Favre, B. (2013). Etude de stratégies de gestion énergétique des bâtiments par l’application de la programmation dynamique. Paris: PhD Thesis, ENMP.

    Google Scholar 

  • Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1992). Sur les systemes non linéaires différentiellement plats. Comptes rendus de l’Académie des sciences. Série 1, Mathématique (Vol. 315, pp. 619–624): Elsevier.

  • Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1995). Flatness and defect of nonlinear systems: introductory theory and examples. International journal of control, 61(6), 1327–1361. Taylor & Francis.

    Article  MathSciNet  MATH  Google Scholar 

  • Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1999). A lie-backlund approach to equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 44(5), 922–937.

    Article  MathSciNet  MATH  Google Scholar 

  • Fliess, M., & Sira-Ramírez, H. (2004). Reconstructeurs d’état. C.R. Acad. Sci. Paris, ser.I, 338, 91–96.

  • Fliess, M., & Sira-Ramírez, H. (2003). An algebraic framework for linear identification. ESAIM Control Optimiz Calc. Variat., 9, 151–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Fliess, M., Join, C., & Sira-Ramírez, H. (2004). Robust residual generation for linear fault diagnosis: an algebraic setting with examples Internat. J. Control, 77, 1223– 1242.

    Article  MathSciNet  MATH  Google Scholar 

  • Fliess, M., Join, C., & Mounier, H. (2005). An introduction to nonlinear fault diagnosis with an application to a congested internet router. Lecture note Advances in Communication and Control Networks, (p. 308): Springer.

  • Fliess, M. (2006). Analyse non standard du bruit. C.R. Acad. Sci. Paris Ser, I(342), 797–802.

    Article  MathSciNet  MATH  Google Scholar 

  • Fliess, M., Join, C., & Sira-Ramírez, H. (2008). Non-linear estimation is easy. Int. J. Model. Identif. Control, 4, 12–27.

    Article  Google Scholar 

  • Fliess, M., & Sira-Ramírez, H. (2008). Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques. In Garnier, H., & Wang, L. (Eds.) Identification of Continuous-time Models from Sampled Data, Springer, 362–391.

  • Friedland, B. (2012). Control system design: an introduction to state-space methods Courier Dover Publications.

  • Hazyuk, I., Ghiaus, C., & Penhouet, D. (2012). Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part {I}–Building modeling. Building and Environment, 51, 379–387. Elsevier.

    Article  Google Scholar 

  • Hazyuk, I., Ghiaus, C., & Penhouet, D. (2012). Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part {II} - Control algorithm. Building and Environment, 51, 388–394. Elsevier.

    Article  Google Scholar 

  • Isidori, A, Moog, C.H., & De Luca, A. (1986). A sufficient condition for full linearization via dynamic state feedback. In 1986 25th IEEE Conference on Decision and Control, 25, 203–208.

  • Kolchin, E.R. (1973). Differential algebra & algebraic groups Vol. 54: Academic Press.

  • Kun, D., Prabir, B., Prashant, G.M., & Sean, P.M. (2010). Building thermal model reduction via aggregation of states IEEE. American Control Conference, 2010, 5118– 5123.

    Google Scholar 

  • Li, Y.A., Kiam H., & Chong, G.C.Y. (2006). PID control system analysis and design. IEEE Control Systems, 26(1), 32–41.

    Article  Google Scholar 

  • Li, X. (2014). Building energy consumption on-line forecasting using physics based system identification.

  • Li, X., & Wen, J. (2014). Review of building energy modeling for control and operation. Renewable and Sustainable Energy Reviews, 37, 715–537.

    Article  Google Scholar 

  • Li, X., Wen, J., & Er-Wei, B. (2016). Developing a whole building cooling energy forecasting model for on-line operation optimization using proactive system identification. Applied Energy, 164, 69–88. Elsevier.

    Article  Google Scholar 

  • Martin, P. (1992). Contribution à l’étude des systèmes différentiellement plats: PhD Thesis.

  • Menhour, L., d’Andréa-Novel, B., Fliess, M., & Mounier, H. (2013). Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques. Control Engineering Practice, 22, 135–146.

    Article  Google Scholar 

  • Murray, S. N., Walsh, B.P., Kelliher, D., & O’Sullivan, D.T.J (2014). Multi-variable optimization of thermal energy efficiency retrofitting of buildings using static modelling and genetic algorithms - A case study. Building and Environment, 75, 98–107.

    Article  Google Scholar 

  • Molle, D., & Patry, P.-M. (2013). RT 2012 et RT existant: Réglementation thermique et efficacité énergétique-Construction et rénovation Editions Eyrolles.

  • Naji, S., Shamshirband, S., Basser, H., Keivani, A., Alengaram, U.J., Jumaat, M.Z., & Petkovic, D. (2016). Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renewable and Sustainable Energy Reviews, 53, 1520–1528.

    Article  Google Scholar 

  • Naughton, R., Abbas, M.A., & Eklund, J.M. (2011). Comparison of apartment building heating control systems. In 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), 1435–1439.

  • O’Dwyer, A. (2009). Handbook of PI and PID controller tuning rules. World Scientific, 57.

  • Ooka, R., & Komamura, K. (2007). Optimal design method for building energy systems using genetic algorithms. Building and Environment, 44(7), 1538–1544.

    Article  Google Scholar 

  • Paris, B., Eynard, J., Grieu, S., Talbert, T., & Polit, M. (2010). Heating control schemes for energy management in buildings. Energy and Buildings, 42(10), 1908– 1917.

    Article  Google Scholar 

  • Petkovic, M., Shamshirband, S., Petkovic, D., Abbasi, A., Kiah, M.L.M., Unar, J.A., živkovic, L., & Miomir Raos, M. (2015). Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm. Jour. Energy, 87, 343–351.

    Article  Google Scholar 

  • Petkovic, D., Milan, P., Shahaboddin, S., Shatirah, A., Miomir, R., & Dušan, M. (2015). Evaluation of the most influential parameters of heat load in district heating systems. Energy and Buildings, 104, 264–274.

    Article  Google Scholar 

  • Prívara, S., VáHa, Z., Gyalistras, D., Cigler, J., Sagerschnig, C., Morari, M., & Ferkl, L. (2011). Modeling and identification of a large multi-zone office building. In 2011 IEEE International Conference on Control Applications (CCA), 55–60.

  • Protic, M., Shamshirband, S., Anisi, M.H., Petkovic, D., Mitic, D., Raos, M., Arif, M., & Alam, K.A. (2015). Appraisal of soft computing methods for short term consumers’ heat load prediction in district heating systems. Energy, 82, 697–704.

    Article  Google Scholar 

  • Protic, M., Shamshirband, S., Petkovic, D., Abbasi, A., Kiah, M.L.M., Unar, J.A., Zivkovic, L., & Raos, M. (2015). Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm. Energy, 87, 343– 351.

    Article  Google Scholar 

  • Rezaie, B., & Rosen, M.A. (2012). District heating and cooling: Review of technology and potential enhancements. Applied Energy, 93, 2–10. Elsevier.

    Article  Google Scholar 

  • Ritt, J.F. (1966). Differential algebra. American Mathematical Soc., 33.

  • Rotella, F., & Zambettakis, I. (2011). Minimal single linear functional observers for linear systems. Automatica, 47(1), 164–169. Elsevier.

    Article  MathSciNet  MATH  Google Scholar 

  • Rouchon, P. (2005). Flatness based control of oscillators. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 85(6), 411–421.

    Article  MathSciNet  MATH  Google Scholar 

  • Rouquette, C. (2012). Bilan énergétique de la France pour 2011. Réalités industrielles Eska, 4, 77–149.

    Article  Google Scholar 

  • Rudolph, J., Winkler, J., & Woittennek, F. (2003). Flatness based control of distributed parameter systems: examples and computer exercises from various technological domains. SHAKER, 2003.

  • Shamshirband, S., Petkovic, D., Enayatifar, R., Abdullah, A.H., Markovic, D., Lee, M., & Ahmad, R. (2015). Heat load prediction in district heating systems with adaptive neuro-fuzzy method. Energy Reviews, 48, 760– 767.

    Google Scholar 

  • Sira-Ramírez, H., & Agrawal, S.K. (2004). Differentially flat systems Vol. 14: CRC Press.

  • Wemhoff, A.P. (2012). Calibration of {HVAC} equipment {PID} coefficients for energy conservation. Energy and Buildings, 45, 60–66.

    Article  Google Scholar 

  • Wu, S., & Sun, J.-Q. (2012). A physics-based linear parametric model of room temperature in office buildings. Building and Environment, 50, 1–9.

    Article  Google Scholar 

  • Yahiaoui, A., Hensen, J., Soethout, L., & van Paassen, D. (2006). Model based optimal control for integrated building systems. In Proceedings of the 6th International Postgraduate Research Conference in the Built and Human Environment, 322–332.

  • Yosida, K. (1984). Operational Calculus. A Theory of Hyperfunctions. (translated from the Japanese: Springer.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Fliess and C. Join for helpful discussions and fruitful explanations for the implementation of the numerical differentiation methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alhaj Hasan Ola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ola, A.H., Hassane, A., Isam, S. et al. Building energy consumption flatness-based control using algebraic on-line estimation. Energy Efficiency 10, 657–671 (2017). https://doi.org/10.1007/s12053-016-9479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-016-9479-y

Keywords

Navigation