Abstract
A new model-based on-line control of building energy consumption with no drawbacks related to the thermal model or the unplanned changes (occupation, exterior temperature, …) is presented in this paper. The main theoretical tools of this method are the flatness-based control and the recent new setting of numerical differentiation for fast and on-line parameter estimation. Indeed the estimation techniques form an added value in terms of the reliability of the thermal model. Furthermore, the main advantage of using the differential flatness control scheme is that the system behavior can be described by the trajectory of a so-called flat output and a number of its successive time derivatives. This leads to a simple design of the control strategy without the integration of any differential equations. Numerical simulations as well as comparative studies with a classical PID (proportional-integral-derivative) controller are provided to demonstrate the relevance of the proposed approach.
Similar content being viewed by others
References
Alhaj Hasan, O., Defer, D., & Shahrour, I (2014). A simplified building thermal model for the optimization of energy consumption: Use of a random number generator. Energy and Buildings, 82, 322–329.
Alhaj Hasan, O. (2014). Optimization of building energy consumption using simplified models and new control methods. France: PhD Thesis. Lille 1.
Alhaj, O., Abouaissa, H., & Defer, D. (2015). On-line fast parametric estimation of building thermal behavior using algebraic methods. In 2015 IEEE International Conference on Building Efficiency and Sustainable Technologies (ICBEST2015), Singapore.
Ang, K.H., Chong, G., & Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4), 559–576.
Bălan, R., Cooper, J., Chao, K-M., Stan, S., & Donca, R. (2011). Parameter identification and model-based predictive control of temperature inside a house. Energy and Buildings, 43(2–3), 748–758.
Berthou, T., Stabat, P., Salvazet, R., & Marchio, D. (2012). Comparaison de modèles linéaires inverses pour la mise en place de stratégies d’effacement. X X X e Rencontre AUGCIBPSA. Savoie: Chambéry.
Carassus, J. (2006). Comparaison internationale bâtiment et énergie, Rapport intermédiaire, PREBAT, Programme de recherche et d’expérimentation sur l’énergie et le bâtiment. ADEME, CSTB, PUCA. Paris.
Cech, M., & Schlegel, M. (2011). Computing PID tuning regions based on fractional-order model set. In IFAC conference on advances in PID control.
Crabb, J.A., Murdoch, N., & Penman, J.M. (1987). A simplified thermal response model. Building Services Engineering Research and Technology, 8(1), 13–19. SAGE Publications.
Favre, B. (2013). Etude de stratégies de gestion énergétique des bâtiments par l’application de la programmation dynamique. Paris: PhD Thesis, ENMP.
Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1992). Sur les systemes non linéaires différentiellement plats. Comptes rendus de l’Académie des sciences. Série 1, Mathématique (Vol. 315, pp. 619–624): Elsevier.
Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1995). Flatness and defect of nonlinear systems: introductory theory and examples. International journal of control, 61(6), 1327–1361. Taylor & Francis.
Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1999). A lie-backlund approach to equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 44(5), 922–937.
Fliess, M., & Sira-Ramírez, H. (2004). Reconstructeurs d’état. C.R. Acad. Sci. Paris, ser.I, 338, 91–96.
Fliess, M., & Sira-Ramírez, H. (2003). An algebraic framework for linear identification. ESAIM Control Optimiz Calc. Variat., 9, 151–168.
Fliess, M., Join, C., & Sira-Ramírez, H. (2004). Robust residual generation for linear fault diagnosis: an algebraic setting with examples Internat. J. Control, 77, 1223– 1242.
Fliess, M., Join, C., & Mounier, H. (2005). An introduction to nonlinear fault diagnosis with an application to a congested internet router. Lecture note Advances in Communication and Control Networks, (p. 308): Springer.
Fliess, M. (2006). Analyse non standard du bruit. C.R. Acad. Sci. Paris Ser, I(342), 797–802.
Fliess, M., Join, C., & Sira-Ramírez, H. (2008). Non-linear estimation is easy. Int. J. Model. Identif. Control, 4, 12–27.
Fliess, M., & Sira-Ramírez, H. (2008). Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques. In Garnier, H., & Wang, L. (Eds.) Identification of Continuous-time Models from Sampled Data, Springer, 362–391.
Friedland, B. (2012). Control system design: an introduction to state-space methods Courier Dover Publications.
Hazyuk, I., Ghiaus, C., & Penhouet, D. (2012). Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part {I}–Building modeling. Building and Environment, 51, 379–387. Elsevier.
Hazyuk, I., Ghiaus, C., & Penhouet, D. (2012). Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part {II} - Control algorithm. Building and Environment, 51, 388–394. Elsevier.
Isidori, A, Moog, C.H., & De Luca, A. (1986). A sufficient condition for full linearization via dynamic state feedback. In 1986 25th IEEE Conference on Decision and Control, 25, 203–208.
Kolchin, E.R. (1973). Differential algebra & algebraic groups Vol. 54: Academic Press.
Kun, D., Prabir, B., Prashant, G.M., & Sean, P.M. (2010). Building thermal model reduction via aggregation of states IEEE. American Control Conference, 2010, 5118– 5123.
Li, Y.A., Kiam H., & Chong, G.C.Y. (2006). PID control system analysis and design. IEEE Control Systems, 26(1), 32–41.
Li, X. (2014). Building energy consumption on-line forecasting using physics based system identification.
Li, X., & Wen, J. (2014). Review of building energy modeling for control and operation. Renewable and Sustainable Energy Reviews, 37, 715–537.
Li, X., Wen, J., & Er-Wei, B. (2016). Developing a whole building cooling energy forecasting model for on-line operation optimization using proactive system identification. Applied Energy, 164, 69–88. Elsevier.
Martin, P. (1992). Contribution à l’étude des systèmes différentiellement plats: PhD Thesis.
Menhour, L., d’Andréa-Novel, B., Fliess, M., & Mounier, H. (2013). Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques. Control Engineering Practice, 22, 135–146.
Murray, S. N., Walsh, B.P., Kelliher, D., & O’Sullivan, D.T.J (2014). Multi-variable optimization of thermal energy efficiency retrofitting of buildings using static modelling and genetic algorithms - A case study. Building and Environment, 75, 98–107.
Molle, D., & Patry, P.-M. (2013). RT 2012 et RT existant: Réglementation thermique et efficacité énergétique-Construction et rénovation Editions Eyrolles.
Naji, S., Shamshirband, S., Basser, H., Keivani, A., Alengaram, U.J., Jumaat, M.Z., & Petkovic, D. (2016). Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renewable and Sustainable Energy Reviews, 53, 1520–1528.
Naughton, R., Abbas, M.A., & Eklund, J.M. (2011). Comparison of apartment building heating control systems. In 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), 1435–1439.
O’Dwyer, A. (2009). Handbook of PI and PID controller tuning rules. World Scientific, 57.
Ooka, R., & Komamura, K. (2007). Optimal design method for building energy systems using genetic algorithms. Building and Environment, 44(7), 1538–1544.
Paris, B., Eynard, J., Grieu, S., Talbert, T., & Polit, M. (2010). Heating control schemes for energy management in buildings. Energy and Buildings, 42(10), 1908– 1917.
Petkovic, M., Shamshirband, S., Petkovic, D., Abbasi, A., Kiah, M.L.M., Unar, J.A., živkovic, L., & Miomir Raos, M. (2015). Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm. Jour. Energy, 87, 343–351.
Petkovic, D., Milan, P., Shahaboddin, S., Shatirah, A., Miomir, R., & Dušan, M. (2015). Evaluation of the most influential parameters of heat load in district heating systems. Energy and Buildings, 104, 264–274.
Prívara, S., VáHa, Z., Gyalistras, D., Cigler, J., Sagerschnig, C., Morari, M., & Ferkl, L. (2011). Modeling and identification of a large multi-zone office building. In 2011 IEEE International Conference on Control Applications (CCA), 55–60.
Protic, M., Shamshirband, S., Anisi, M.H., Petkovic, D., Mitic, D., Raos, M., Arif, M., & Alam, K.A. (2015). Appraisal of soft computing methods for short term consumers’ heat load prediction in district heating systems. Energy, 82, 697–704.
Protic, M., Shamshirband, S., Petkovic, D., Abbasi, A., Kiah, M.L.M., Unar, J.A., Zivkovic, L., & Raos, M. (2015). Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm. Energy, 87, 343– 351.
Rezaie, B., & Rosen, M.A. (2012). District heating and cooling: Review of technology and potential enhancements. Applied Energy, 93, 2–10. Elsevier.
Ritt, J.F. (1966). Differential algebra. American Mathematical Soc., 33.
Rotella, F., & Zambettakis, I. (2011). Minimal single linear functional observers for linear systems. Automatica, 47(1), 164–169. Elsevier.
Rouchon, P. (2005). Flatness based control of oscillators. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 85(6), 411–421.
Rouquette, C. (2012). Bilan énergétique de la France pour 2011. Réalités industrielles Eska, 4, 77–149.
Rudolph, J., Winkler, J., & Woittennek, F. (2003). Flatness based control of distributed parameter systems: examples and computer exercises from various technological domains. SHAKER, 2003.
Shamshirband, S., Petkovic, D., Enayatifar, R., Abdullah, A.H., Markovic, D., Lee, M., & Ahmad, R. (2015). Heat load prediction in district heating systems with adaptive neuro-fuzzy method. Energy Reviews, 48, 760– 767.
Sira-Ramírez, H., & Agrawal, S.K. (2004). Differentially flat systems Vol. 14: CRC Press.
Wemhoff, A.P. (2012). Calibration of {HVAC} equipment {PID} coefficients for energy conservation. Energy and Buildings, 45, 60–66.
Wu, S., & Sun, J.-Q. (2012). A physics-based linear parametric model of room temperature in office buildings. Building and Environment, 50, 1–9.
Yahiaoui, A., Hensen, J., Soethout, L., & van Paassen, D. (2006). Model based optimal control for integrated building systems. In Proceedings of the 6th International Postgraduate Research Conference in the Built and Human Environment, 322–332.
Yosida, K. (1984). Operational Calculus. A Theory of Hyperfunctions. (translated from the Japanese: Springer.
Acknowledgments
The authors would like to thank M. Fliess and C. Join for helpful discussions and fruitful explanations for the implementation of the numerical differentiation methods.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ola, A.H., Hassane, A., Isam, S. et al. Building energy consumption flatness-based control using algebraic on-line estimation. Energy Efficiency 10, 657–671 (2017). https://doi.org/10.1007/s12053-016-9479-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12053-016-9479-y