Skip to main content

Advertisement

Log in

Optimal and energy efficient operation of conveyor belt systems with downhill conveyors

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Downhill conveyors are important potential energy sources within conveyor belt systems (CBSs). Their energy can be captured using regenerative drives. This paper presents a generic optimisation model for the energy management of CBSs that have downhill conveyors. The optimisation model is able to optimally schedule three configurations of a case-study CBS that is connected to the grid and operated under a time-of-use tariff. The three suggested drive configurations showcase potential energy savings/incomes that can be obtained from implementing: (a) variable speed control, (b) internal use of downhill conveyor energy and (c) the export of energy to the grid. The results show that a CBS with a daily energy consumption of 924 kWh can be reconfigured and controlled to reduce consumption by 53 or 100 % or be made to generate 1984 kWh, depending on the configuration. Analysis of the investment in each of the three configurations is assessed using a life-cycle cost and payback period (PBP). The daily operation simulation results show that the use of regenerative drives and variable speed control is able to provide energy savings in CBSs. The cost analysis shows that the configuration that enables sale of energy to the grid is the most profitable arrangement, for the case study plant under consideration. The sensitivity analysis indicates that the PBPs are more sensitive to the annual electricity price increases than changes in the discount rate. Combining regenerative drives and optimal operation of CBS generates energy savings that give attractive PBPs of less than 5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. htt://www.eskom.co.za (a South African state-owned utility)

  2. Negative consumption implies generation.

  3. http://www.nersa.org.za (Multi-year price determination 2 of 2015/16)

  4. http://www.schneider-electric.com/

References

  • ABB (2011). Technical guide no. 8—electrical braking. (online). http://www.abb.com.

  • ABB (2011). Technical guide no. 1—direct torque control—the world’s most advanced AC drive technology. (online). http://www.abb.com.

  • de Almeida, A.T, Ferreira, F.J.T.E, & Both, D. (2005). Technical and economical considerations in the application of variable-speed drives with electric motor systems. IEEE Trans. Ind Appl., 41(1), 188–99.

    Article  Google Scholar 

  • Andor, G., & Dűlk, M. (2015). Cost of capital estimation for energy efficiency project through a cash flow beta approach. Energy efficiency, 8, 365–84. doi:10.1007/s12053-014-9298-y.

    Article  Google Scholar 

  • Bose, B.K. (2002). Modern power electronic and AC drives, 10-11, Prentice Hall, Inc., Upper Saddle River, New Jeysey, USA.

  • CEMA. (2005). Belt conveyor for bulk material, 6th edn. Florida: Conveyor Equipment Manufacturers Association, Naples.

  • Eskom (2013a). Eskom submittion to nersa for Genflex tariff and incoporation of the MEC into the NMD rules. http://www.eskom.co.za.

  • Eskom (2013b). Tariff and charges booklet 2013/14. http://www.eskom.co.za.

  • Fedorko, G., Molnar, V., Marasova, D., Grincova, A., Dovica, M., Zivcak, J., Toth, T., & Husakova, N. (2014). Failure analysis of belt conveyor damage caused by the falling material. Part I: experimental measurements and regression models. Eng Fail Anal, 36, 30–8. doi:10.1016/j.engfailanal.2013.09.017.

    Article  Google Scholar 

  • Ferreira, F.J.T.E., Fong, J.A.C., & de Almeida, A.T. (2011). Ecoanalysis of variable-speed drives for flow regulation in pumping systems. IEEE Trans Ind Electron, 58(6), 2117–25. doi:10.1109/TIE.2010.2057232.

    Article  Google Scholar 

  • Gellings, C.W., & Samotyj, M. (2013). Smart grid as advanced technology enabler of demand response. Energy efficiency, 6, 685–94. doi:10.1007/s12053-013-9203-0.

    Article  Google Scholar 

  • González-Gil, A., Palacin, R., & Batty, P. (2013). Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy. Energ Convers Manage, 75, 374–88. doi:10.1016/j.enconman.2013.06.039.

    Article  Google Scholar 

  • Hiltermann, J., Lodewijks, G., Schott, D.L., Rijsenbrij, J.C., Dekkers, J.A.J.M., & Pang, Y. (2011). A methodology to predict power saving of troughed belt conveyors by speed control. Particul Sci Technol, 29(1), 14–27. doi:10.1080/02726351.2010.491105.

    Article  Google Scholar 

  • Kouro, S., Rodríguez, J., Wu, B., Bernet, S., & Perez, M. (2012). Powering the future of industry—high power adjustable speed drive topologies. IEEE Ind. Appl. Mag., 18(4), 26–39.

    Article  Google Scholar 

  • ISO (1989). Continuous mechanical handling equipment—belt conveyor with carrying idlers—calculation of operating power and tensile forces. ISO, 5048.

  • Lűchinger, P., Maier, U., & Errath, R.A. (2006). Active front end technology in the application of a down hill conveyor. In Cement Industry Technical Conference, 2006. Conference Record. IEEE. doi:10.1109/CITCON.2006.1635717.

  • Ma, T., Yang, H., & Lu, L. (2014). Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. Energy Convers and Manage, 79, 387–97. doi:10.1016/j.enconman.2013.12.047.

    Article  Google Scholar 

  • Madlool, N., Saidur, R., Rahim, N., & Kamalisarvestani, M. (2013). An overview of energy savings measures for cement industries. Renew Sust Energ Rev, 19, 18–29. doi:10.1016/j.rser.2012.10.046.

    Article  Google Scholar 

  • Mathaba, T, Xia, X, & Zhang, J (2012). Optimal scheduling of conveyor belt systems under critical peak pricing. In International Power and Energy Conference (IPEC), 2012, Ho Chi Minh City, Vietnam, pp. 315–20.

  • Mathaba, T., Xia, X., & Zhang, J. (2014). Analysing the economic benefit of electricity price forecast in industrial load scheduling. Electr Pow Syst Res, 116(0), 158–65. doi:10.1016/j.epsr.2014.05.008.

    Article  Google Scholar 

  • Middelberg, A, Zhang, J, & Xia, X (2009). An optimal control model for load shifting—with application in the energy management of a colliery. Appl Energ, 86(7-8), 1266–73.

    Article  Google Scholar 

  • Mitrovic, N., Petronijevic, M., Kostic, V., & Jeftenic, B. (2012). Electrical drives for crane application. InTech, Rijeka, Croatia. http://www.intechopen.com/books/mechanical-engineering/electrical-drives-for-crane-application.

  • Musolino, V., Pievatolo, A., & Tironi, E. (2011). A statistical approach to electrical storage sizing with application to the recovery of braking energy. Energy, 36 (11), 6697–704. doi:10.1016/j.energy.2011.07.037.

    Article  Google Scholar 

  • Ondraczek, J., Komendantova, N., & Patt, A. (2015). WACC the dog: the effect of financing costs on the levelized cost of solar PV power. Renew Energ, 75, 888–98. doi:10.1016/j.renene.2014.10.053.

    Article  Google Scholar 

  • Pelzer, R., Mathews, E., le Roux, D., & Kleingeld, M. (2008). A new approach to ensure successful implementation of sustainable demand side management (DSM) in South African mines. Energy, 33(8), 1254–63. doi:10.1016/j.energy.2008.03.004.

    Article  Google Scholar 

  • Ristić, L B, & Jeftenić, B I (2012). Implementation of fuzzy control to improve energy efficiency of variable speed bulk material transportation. IEEE Trans Ind Electron, 59(7), 2959–68.

    Article  Google Scholar 

  • Roberts, A. (2003). Chute performance and design for rapid flow conditions. Chem Eng Technol, 26 (2), 163–70. doi:10.1002/ceat.200390024.

  • Rodríguez, J, Pontt, J, Alzamora, G, Becker, N, Einenkel, O, & Weinstein, A (2002). Novel 20-MW downhill conveyor system using three-level converters. IEEE Trans Ind Electron, 49, 1093–100.

    Article  Google Scholar 

  • Rodríguez, J, Jih-Sheng, L, & Fang, Z P (2002). Multilevel inverters: a survey of topologies, control and applications. IEEE Trans Ind Electron, 49(4), 724–738.

    Article  Google Scholar 

  • Saidur, R., Mekhilef, S., Ali, M., Safari, A., & Mohammed, H. (2012). Applications of variable speed drive (VSD) in electrical motors energy savings. Renew Sust Energ Rev, 16(1), 543–50. doi:10.1016/j.rser.2011.08.020.

    Article  Google Scholar 

  • Schneider-Electric (2013). Active front end—options for Altivar 61 and Altivar 71. (online). http://www.schneider-electric.com/.

  • Strauss, W.A. (2008). Partial differential equations—an introduction, 2nd edn. 10–11, John Wiley & Sons, Inc., Hoboken, New Jeysey, USA.

  • Trefethen, L.N. (1996). Finite difference and spectral methods for ordinary and partial differential equations: Cornell University.

  • vanDelft, T.J. (2010). Modeling and model predictive control of a conveyor-belt dryer—applied to the drying of fish feed. Master’s thesis, Norwegian University of Science and Technology.

  • Zhang, J., Lv, C., Qiu, M., Li, Y., & Sun, D. (2013). Braking energy regeneration control of a fuel cell hybrid electric bus. Energ Convers Manage, 76, 1117–24. doi:10.1016/j.enconman.2013.09.003.

    Article  Google Scholar 

  • Zhang, L., Xia, X., & Zhang, J. (2014). Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems. Appl Energ, 119(0), 306–13. doi:10.1016/j.apenergy.2014.01.031.

    Article  Google Scholar 

  • Zhang, S, & Xia, X (2010). Optimal control of operation efficiency of belt conveyor systems. Appl Energ, 87, 1929–37.

    Article  Google Scholar 

  • Zhang, S, & Xia, X (2011). Modeling and energy efficiency optimization of belt conveyors. Appl Energ, 88(9), 3061–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Mathaba.

Appendix:: Appendix: Discrete version of the transport equation

Appendix:: Appendix: Discrete version of the transport equation

The flow model Eq. 1 is discretised into N x samples in space and N t samples in time over a given total time period using a finite difference method . The implicit backward finite difference method is chosen due to its stability (Trefethen 1996). Therefore, Eq. 1 becomes,

$$\begin{array}{@{}rcl@{}} &&\frac{q(i,n~+~1)~-~q(i,n)}{\Delta t}\\&&+v_{n}\frac{q(i~+~1,n+1)-q(i-1,n+1)}{2{\Delta} x}~=~0. \end{array} $$
(14)

A backward space derivative difference is used for the tail end of the conveyor because q(N x + 1,n) is invalid. Let, \(\gamma _{n}~=~v_{n}\frac {\triangle t}{\triangle x}\), then the algebraic manipulation of the Eq. 14 results into,

$$ q(i,n+1)=\left\{\begin{array}{ll} \begin{array}{l} 2\{q(i-1,n)-q(i-1,n+1)\}/\gamma_{i}+q(i-2,n+1)\\ \{q(N_{x},n)-q(N_{x}-1,n+1)\}/(\gamma_{i}+1) \end{array} & \begin{array}{l} i=2,3,{\ldots} N_{x}-1\\ i=N_{x} \end{array}\end{array}\right.. $$
(15)

Equation 15 can be also be written in matrix and vector form as,

$$ \widehat{A}_{n}\mathbf{q}_{n~+~1}~=~\{\mathbf{q}{}_{n}~+~\bar{\mathbf{b}}_{n}~\cdot~ I_{n}~/~v_{n}\}\text{ where } \widehat{A}_{n}\in\mathcal{R}^{N_{x}~\times~ N_{x}}\text{ ,} \bar{\mathbf{b}}_{n}\in\mathcal{R}^{N_{x}~\times~1}, $$
(16)

where q n is a vector q(i,n) ∀ i ∈ [1,N x ] and, the matrices \(\widehat {A}_{n}\) and vectors \(\bar {\mathbf {b}}_{n}\) are defined by,

$$ \widehat{A}_{n}~=~\left[\begin{array}{lllllll} 1 & \gamma_{n}/2 & 0 & {\cdots} & 0 & 0 & 0\\ -\gamma_{n}/2 & 1 & -\gamma_{n}/2 & & 0 & 0 & 0\\ 0 & -\gamma_{n}/2 & 1 & {\ddots} & 0 & 0 & 0\\ {\vdots} & & {\ddots} & {\ddots} & {\vdots} & {\vdots} & \vdots\\ 0 & 0 & 0 & & 0 & 0 & 0\\ 0 & 0 & 0 & & -\gamma_{n}/2 & 1 & \gamma_{n}/2\\ 0 & 0 & 0 & & 0 & -\gamma_{n} & (1~+~\gamma_{n}) \end{array}\right]\text{and }\bar{\mathbf{b}}_{n}~=~\left[\begin{array}{ll} \gamma_{n}~/~2\\ 0\\ 0\\ 0\\ \vdots\\ 0\\ 0 \end{array}\right]. $$
(17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathaba, T., Xia, X. Optimal and energy efficient operation of conveyor belt systems with downhill conveyors. Energy Efficiency 10, 405–417 (2017). https://doi.org/10.1007/s12053-016-9461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-016-9461-8

Keywords

Navigation