Skip to main content

Advertisement

Log in

Which factors drive CO2 emissions in EU-15? Decomposition and innovative accounting

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

This study breaks down carbon emissions into six effects within the 15 European Union countries group (EU-15) and analyses their evolution in four distinct periods: 1995–2000 (before European directive 2001/77/EC), 2001–2004 (after European directive 2001/77/EC and before Kyoto), 2005–2007 (after Kyoto implementation), and 2008–2010 (after Kyoto first stage), to determine which of them had more impact in the intensity of emissions. The complete decomposition technique was used to examine the carbon dioxide (CO2) emissions and its components: carbon intensity (CI effect); changes in fossil fuels consumption towards total energy consumption (EM effect); changes in energy intensity effect (EG effect); the average renewable capacity productivity (GC effect); the change in capacity of renewable energy per capita (CP effect); and the change in population (P effect). It is shown that in the post Kyoto period there is an even greater differential in the negative changes in CO2 emissions, which were caused by the negative contribution of the intensity variations of the effects EM, GC, CP and P that exceeded the positive changes occurred in CI and EG effects. It is also important to stress the fluctuations in CO2 variations before and after Kyoto, turning positive changes to negative changes, especially in France, Italy and Spain, revealing the presence of heterogeneity. Moreover, the positive effect of renewable capacity per capita and the negative effect of renewable capacity productivity are the main factors influencing the reduction in CO2 emissions during the Kyoto first stage. It is possible to infer from the results that one of the ways to reduce emissions intensity will be by increasing the renewable capacity and the productivity in energy generation and consequently through the reduction of the share of the consumption of fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Such as the highest levels of energy intensity for Netherlands and Slovakia recorded in the second phase of the 2008–2012 Kyoto periods, whereas Luxembourg and Slovenia show the lowest levels of energy intensity and to a lesser extent Latvia, Austria, Germany and Italy.

  2. In Ireland, Luxembourg, and Spain the population density increased by 21, 17, and 14 %, respectively, while in most of other member states the population density increased while Netherlands and Belgium emerge as the countries with the largest levels of population density.

References

  • Achão, C., & Schaeffer, R. (2009). Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980–2007 period: Measuring the activity, intensity and structure effects. Energy Policy, 37(12), 5208–5220. doi:10.1016/j.enpol.2009.07.043.

    Article  Google Scholar 

  • Alam, M., Begum, I., Buysse, J., Rahman, S., & Huylenbroeck, G. (2011). Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renewable and Sustainable Energy Reviews, 15(6), 3243–3251. doi:10.1016/j.rser.2011.04.029.

    Article  Google Scholar 

  • Alcántara, V. E., & Padilla, E. R. (2005). Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo. Revista de Economía Crítica, Asociación de Economía Crítica, 4, 17–37.

    Google Scholar 

  • Ang, B. W. (1995). Decomposition methodology in industrial energy demand analysis. Energy, 20(11), 1081–1095.

    Article  Google Scholar 

  • Ang, B. W. (2004). Decomposition analysis for policymaking in energy: which is the preferred method ? Energy Policy, 32(9), 1131–1139. doi:10.1016/S0301-4215(03)00076-4.

    Article  Google Scholar 

  • Ang, B. W., & Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19(3), 363–374.

    Article  Google Scholar 

  • Ang, B. W., & Zhang, F. (1999). Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique. Energy, 24(4), 297–305.

    Article  Google Scholar 

  • Ang, B. W., & Zhang, F. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.

    Article  Google Scholar 

  • Ang, B. W., Liu, F., & Chew, E. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31, 1561–1566.

    Article  Google Scholar 

  • Ang, B. W., & Choi, K. H. (1997). Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method. Energy Journal, 18(3), 59–73.

    Article  Google Scholar 

  • Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 40, 1014–1021.

    Article  Google Scholar 

  • Arouri, M., Uddin, G.S., Nawaz, K., Shahbaz, M. & Teulon, F. (2013). Causal Linkages between Financial Development, Trade Openness and Economic Growth: Fresh Evidence from Innovative Accounting Approach in Case of Bangladesh. Working Papers 2013–037, Department of Research, Ipag Business School. https://www.ipag.fr/wp-content/uploads/recherche/WP/IPAG_WP_2013_037.pdf

  • Bartoletto, S., & Rubio, M. (2008). Energy transition and CO2 emissions in southern Europe: Italy and Spain (1861–2000). Global Environment, 2, 46–81.

  • Bhattacharyya, S. C., & Matsumura, W. (2010). Changes in the GHG emission intensity in EU-15: lessons from a decomposition analysis. Energy, 35, 3315–3322.

    Article  Google Scholar 

  • Brizga, J., Feng, K., & Hubacek, K. (2013). Drivers of CO 2 emissions in the former soviet union: a country level IPAT analysis from 1990 to 2010. Energy, 59, 743–753.

    Article  Google Scholar 

  • Camarero, M., Castillo-Giménez, J., Picazo-Tadeo, A. J., & Tamarit, C. (2014). Is eco-efficiency in greenhouse gas emissions converging among European Union countries? Empirical Economics, 47, 143–168.

    Article  Google Scholar 

  • Commission of the European Communities. (2008). Communication from the Commission to the European Parliament, the Council, the European Economics and Social Committee and the Committee of the Regions.

  • Diakoulaki, D., & Mandaraka, M. (2007). Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Economics, 29(4), 636–664. doi:10.1016/j.eneco.2007.01.005.

    Article  Google Scholar 

  • Dittmar, M. (2012). Nuclear energy: status and future limitations. Energy, 37(1), 35–40.

    Article  Google Scholar 

  • Dursun, B., & Alboyaci, B. (2010). The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand. Renewable and Sustainable Energy Review, 7, 1979–1988.

    Article  Google Scholar 

  • Ebohon, O. J., & Ikeme, A. J. (2006). Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries. Energy Policy, 34(18), 3599–3611. doi:10.1016/j.enpol.2004.10.012.

  • European Commission (2014). Energy Economic Developments in Europe, European Economy Series, 1/2014.

  • European Union. (2001). Directive 2001/77/EC of the European parliament and of the council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market.

    Google Scholar 

  • European Union. (2003). Directive 2003/30/EC of the European parliament and of the council of 8 may 2003 on the promotion of the use of biofuels or other renewable fuels for transport.

    Google Scholar 

  • European Union. (2009). Decision no 406/2009/EC of the European parliament and of the council of 23 April 2009 on the effort of member states to reduce their greenhouse gas emissions to meet the community’s greenhouse gas emission reduction commitments up to 2020.

    Google Scholar 

  • Eurostat. (2012). Environment and Energy. Retrieved from http//:ec.europa.eu/eurostat

  • G-20 Clean energy Factbook (2010). Who’s winning the clean energy race? - Growth. The Pew Charitable Trusts: Competition and Opportunity in the World’s Largest Economies.

    Google Scholar 

  • Gales, B., Kander, A., Malanima, P., & Rubio, M. (2007). North versus south: energy transition and energy intensity in Europe over 200 years. European Review of Economic History, 11(2), 219–253.

    Article  Google Scholar 

  • González, P. F., Landajo, M., & Presno, M. J. (2014a). The driving forces behind changes in CO2 emission levels in EU-27. Differences between member states. Environmental Science & Policy, 38, 11–16. doi:10.1016/j.envsci.2013.10.007.

    Google Scholar 

  • González, P. F., Landajo, M., & Presno, M. J. (2014b). Tracking European Union CO2 emissions through LDMI (logarithmic-mean divisia índex) decomposition. The activity Revaluation approach. Energy, 73, 741–750. doi:10.1016/j.enpol.2005.02.005.

    Google Scholar 

  • Greening, L. A., Davis, W. B., Schipper, L., & Khrushch, M. (1997). Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries. Energy Economics, 19(3), 375–390.

    Article  Google Scholar 

  • Greening, L. A., Davis, W., & Schipper, L. (1998). Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971–1991. Energy Economics, 13(3), 43–65.

    Article  Google Scholar 

  • Halamay, D.A. and Brekken, T.K.A. (2011). Monte Carlo analysis of the impacts of high renewable power penetration. Energy Conversion Congress and Exposition (ECCE), −IEEE, 3059–3066.

  • Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2008). CO 2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy, 33(3), 492–499. doi:10.1016/j.energy.2007.09.014.

    Article  Google Scholar 

  • Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2010). Energy CO2 emissions for 1990–2020: a decomposition analysis for EU-25 and Greece. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(20), 1908–1917. doi:10.1080/15567030902937101.

    Article  Google Scholar 

  • Hoekstra, R., & Bergh, J. J. C. J. M. V. D. (2003). Comparing structural and index decomposition analysis. Energy Economics, 25(1), 39–64.

    Article  Google Scholar 

  • Howarth, R., Schipper, L., Duerr, P., & Strøm, S. (1991). Manufacturing energy use in eight OECD countries: decomposing the impacts of changes in output, industry structure and energy intensity. Energy Economics, 13(2), 135–142.

    Article  Google Scholar 

  • Intergovernamental Panel on Climate Change. (2000). IPCC Special Report Emissions Scenarios.

  • International Energy Agency (2012b). IEA statistics electricity information 2012. Paris.

  • International Energy Agency. (2012b). World Energy Outlook 2012a.

  • International Energy Agency (2013). Energy statistics 2013. Paris.

  • International Panel on Climate Change (2007). Climate change 2007 synthesis report. Geneva.

  • Kabouris, J., & Kanellos, F. (2010). Impacts of large scale wind penetration on designing and operation of electric power systems. IEEE Transactions on Sustainable Energy, 1(2), 107–114.

    Article  Google Scholar 

  • Kander, A., Malanima, P., & Warde, P. (2013). Power to the people. Energy in Europe over the last five centuries. Princeton: Princeton University Press.

    Google Scholar 

  • Kawase, R., Matsuoka, Y., & Fujino, J. (2006). Decomposition analysis of CO2 emission in long-term climate stabilization scenarios. Energy Policy, 34(15), 2113–2122. doi:10.1016/j.enpol.2005.02.005.

    Article  Google Scholar 

  • Lee, C., & Chien, M. (2010). Dynamic modelling of energy consumption, capital stock, and real income in G-7 countries. Energy Economics, 32(3), 564–581. doi:10.1016/j.eneco.2009.08.022.

    Article  Google Scholar 

  • Lee, C., & Chiu, Y. (2011). Nuclear energy consumption, oil prices, and economic growth: evidence from highly industrialized countries. Energy Economics, 33(2), 236–248. doi:10.1016/j.eneco.2010.07.001.

    Article  Google Scholar 

  • Lee, K., & Oh, W. (2006). Analysis of CO2 emissions in APEC countries: a time-series and a cross-sectional decomposition using the log mean divisia method. Energy Policy, 34(17), 2779–2787. doi:10.1016/j.enpol.2005.04.019.

    Article  Google Scholar 

  • Liaskas, K., Mavrotas, G., Mandaraka, M., & Diakoulaki, D. U. (2000). Decomposition of industrial CO2 emissions: the case of European Union. Energy Economics, 22(4), 383–394.

    Article  Google Scholar 

  • Lin, B., & Moubarak, M. (2013). Decomposition analysis: change of carbon dioxide emissions in the Chinese textile industry. Renewable and Sustainable Energy Reviews, 26, 389–396.

    Article  Google Scholar 

  • Lindmark, M. (2002). An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870–1997. Ecological Economics, 42(1–2), 333–347.

    Article  Google Scholar 

  • Lise, W. (2006). Decomposition of CO2 emissions over 1980–2003 in Turkey. Energy Policy, 34(14), 1841–1852. doi:10.1016/j.enpol.2004.12.021.

    Article  Google Scholar 

  • Liu, L., Fan, Y., Wu, G., & Wei, Y. (2007). Using LMDI method to analyze the change of China’ s industrial CO2 emissions from final fuel use: an empirical analysis. Energy Policy, 35(11), 5892–5900. doi:10.1016/j.enpol.2007.07.010.

    Article  Google Scholar 

  • Luukkanen, J., & Kaivo-oja, J. (2002). Meaningful participation in global climate policy? Comparative analysis of the energy and CO2 efficiency dynamics of key developing countries. Global Environmental Change, 12(2), 117–126.

    Article  Google Scholar 

  • Ma, C., & Stern, D. I. (2008). China’s changing energy intensity trend: a decomposition analysis. Energy Economics, 30(3), 1037–1053. doi:10.1016/j.eneco.2007.05.005.

    Article  Google Scholar 

  • Maghyereh, A. (2004). Oil price shocks and emerging stock markets: a generalized VAR approach. International Journal of Applied Econometrics and Quantitative Studies, 1(2), 27–40.

    Google Scholar 

  • Menyah, K., & Wolde-Rufael, Y. (2012). CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy, 38(6), 2911–2915. doi:10.1016/j.enpol.2010.01.024.

    Article  Google Scholar 

  • Factbook, O. E. C. D. (2013). Economic. Environment and Social: Statistics.

    Google Scholar 

  • Park, J., & Ratti, R. (2008). Oil price shocks and stock markets in the U.S. and 13 European countries. Energy Economics, 30, 2587–2608. doi:10.1016/j.eneco.2008.04.003.

    Article  Google Scholar 

  • Paul, S., & Bhattacharya, R. (2004). CO2 emission from energy use in India: a decomposition analysis. Energy Policy, 32(2), 585–593. doi:10.1016/S0301-4215(02)00311-7.

    Article  Google Scholar 

  • Picazo-Tadeo, A. J., Castillo-Giménez, J., & Beltrán-Esteve, M. (2014). An intertemporal approach to measuring environmental performance with directional distance functions: greenhouse gas emissions in the European Union. Ecological Economics, 100, 173–182.

    Article  Google Scholar 

  • Raupach, M., Marland, G., Ciais, P., Le Quéré, C., Canadell, J., Klepper, G., & Field, C. (2007). Global and regional drivers of accelerating CO2 emissions. In W. C. Clark, Harvard University, & Cambridge MA (Eds.), Proceedings of the National Academy of Sciences of the United States of America (pp. 10288–10293). doi:www.pnas.org/cgi/doi/10.1073/pnas.0700609104

  • Rose, A., & Casler, S. (1996). Input-output structural decomposition analysis: a critical appraisal. Economic Systems Research, 8(1), 33–62.

    Article  Google Scholar 

  • Schipper, L., Murtishaw, S., Khrushch, M., Ting, M., Karbuz, S., & Unander, F. (2001). Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995. Energy Policy, 29(9), 667–688.

    Article  Google Scholar 

  • Shahiduzzaman, M., Layton, A., & Alam, K. (2015). Decomposition of energy-related CO2 emissions in Australia: challenges and policy implications. Economic Analysis and Policy, 45, 100–111. doi:10.1016/j.eap.2014.12.001.

    Article  Google Scholar 

  • Sun, J. W. (1998). Changes in energy consumption and energy intensity: a complete decomposition model. Energy Economics, 20(1), 85–100.

    Article  Google Scholar 

  • Sun, J. W. (1999). Decomposition of aggregate CO2 emissions in the OECD: 1960–1995. The Energy Journal, 20(3), 147–155.

    Article  Google Scholar 

  • Sun, J. W. (2000). Is CO2 emission intensity comparable? Energy Policy, 28(15), 1081–1084.

    Article  Google Scholar 

  • The World Databank. (2014). World Databank. Retrieved April 20, 2014, from http://databank.worldbank.org/data/home.aspx

  • Timilsina, G., & Shrestha, A. (2009). Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: an LMDI decomposition analysis. International Journal of Energy Research, 33(4), 396–414. doi:10.1002/er.

    Article  Google Scholar 

  • Tol, R., Pacala, S., & Socolow, R. (2009). Understanding long-term energy use and carbon dioxide emissions in the USA. Journal of Policy Modelling, 31(3), 425–445.

    Article  Google Scholar 

  • Torvanger, A. (1991). Manufacturing sector carbon dioxide emissions in nine OECD countries, 1973–87: a divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities and international structure. Energy Economics, 13(3), 168–186.

    Article  Google Scholar 

  • Unander, F., Karbuz, S., Schipper, L., Khrushch, M., & Ting, M. (1999). Manufacturing energy use in OECD countries: decomposition of long-term trends. Energy Policy, 27(13), 769–778.

    Article  Google Scholar 

  • United Nations. (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change.

    Google Scholar 

  • Vaninsky, A. (2014). Factorial decomposition of CO2 emissions: a generalized divisia índex approach. Energy Economics, 45, 389–400. doi:10.1016/j.eneco.2014.07.008.

    Article  Google Scholar 

  • Wang, C., Chen, J., & Zou, J. (2005). Decomposition of energy-related CO2 emission in China: 1957–2000. Energy, 30(1), 73–83. doi:10.1016/j.energy.2004.04.002.

    Article  Google Scholar 

  • World Bank. (2013). World development indicators. Washington (DC).

  • Wu, L., Kaneko, S., & Matsuoka, S. (2005). Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3), 319–335. doi:10.1016/j.enpol.2003.08.003.

    Article  Google Scholar 

  • Zhang, M., Mu, H., Ning, Y., & Song, Y. (2009). Decomposition of energy-related CO2 emission over 1991–2006 in China. Ecological Economics, 68(7), 2122–2128. doi:10.1016/j.ecolecon.2009.02.005.

    Article  Google Scholar 

  • Zhang, X., & Cheng, X. (2009). Energy consumption, carbon emissions, and economic growth in China. Ecological Economics, 68(10), 2706–2712. doi:10.1016/j.ecolecon.2009.05.011.

    Article  Google Scholar 

  • Zhang, Y., Zhang, J., Yang, Z., & Li, S. (2011). Regional differences in the factors that influence China’ s energy-related carbon emissions, and potential mitigation strategies. Energy Policy, 39(12), 7712–7718. doi:10.1016/j.enpol.2011.09.015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Madaleno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moutinho, V., Madaleno, M. & Silva, P.M. Which factors drive CO2 emissions in EU-15? Decomposition and innovative accounting. Energy Efficiency 9, 1087–1113 (2016). https://doi.org/10.1007/s12053-015-9411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-015-9411-x

Keywords

JEL

Navigation