Skip to main content

Advertisement

Log in

Economic analysis of the energy-efficient household appliances and the rebound effect

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Many strategies, such as improving energy efficiency, were identified as solutions to reduce energy consumption and carbon emissions. Nonetheless, the presence of a rebound effect could lead to a decrease in potential energy savings and carbon reductions resulting from technological advances in energy consumption. This study focuses on direct and indirect rebound effects on households’ behavior. We examine the situation where consumers demand two types of energy services and explore how their choices are affected by changes in the efficiency of providing these services—and, importantly, the consequent implications for energy use. We employ a (narrowly construed) general equilibrium methodology in an attempt to provide a complete picture of the interactions in play in a theoretically confined setting. We limit the general equilibrium problem to two categories of energy appliances but include consideration of the production side of the equation and consequent budget implications, thus “closing” the system in a general equilibrium sense. We find that rebound magnitudes (both indirect and direct) are large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Literature defined the indirect rebound phenomenon as a description of the impact of cost saving on the consumer’s behavior. Indeed, a consumer can spend the saved amount of money, from the efficiency gains that resulted from energy use, on other goods and services that also require energy use or non-energy use appliances such as food, home furnishings... since that these non-energy appliances require energy in their production. Thus, we notice that indirect rebound effect encourages the use of saved money on a variety of goods and services that do not necessarily provide energy services. Based on these analyses, the indirect rebound effect in our study assumes that a consumer’s cost savings collected from energy efficiency gains would be respent on other profitable energy services which is only a subset of this indirect effect.

  2. All numerical calculations and plots were made with Maple 11.

References

  • Allan, G., Hanley, N., McGregor, P., Swales, J.K., & Turner, K. (2007). The impact of increased efficiency in the industrial use of energy: a computable general equilibrium analysis for the United Kingdom. Energy Economics, 29(4), 779–798.

    Article  Google Scholar 

  • Barker, T., Dagoumas, A., & Rubin, J. (2009). The macroeconomic rebound effect and the world economy. Energy Efficiency, 2, 411–427.

    Article  Google Scholar 

  • Bentzen, J. (2004). Estimating the rebound effect in US manufacturing energy consumption. Energy Economics, 26, 123–134.

    Article  Google Scholar 

  • Berkhout, P.H.G., Muskens, J.C., & Velthuijsen, J.W. (2000). Defining the rebound effect. Energy Policy, 28, 425–432.

    Article  Google Scholar 

  • Binswanger, M. (2001). Technological progress and sustainable development: what about the rebound effect? Ecological Economics, 36, 119–132.

    Article  Google Scholar 

  • Birol, F., & Keppler, J.H. (2000). Prices, technology development and the rebound effect. Energy Policy, 28, 457–479.

    Article  Google Scholar 

  • Brannlund, R., Ghalwash, T., & Nordstrom, J. (2007). Increased energy efficiency and the rebound effect: effects on consumption and emissions. Energy Economics, 29, 1–17.

    Article  Google Scholar 

  • Brookes, L.G. (1990). The green house effect: the fallacies in the energy efficiency solution. Energy Policy, 18(2), 199–201.

    Article  Google Scholar 

  • Brookes, L.G. (2000). Energy efficiency fallacies revisited. Energy Policy, 28(6–7), 355–366.

    Article  Google Scholar 

  • Dimitropoulos, J. (2007). Energy productivity improvements and the rebound effect: an overview of the state of knowledge. Energy Policy, 35(12), 6354–6363.

    Article  Google Scholar 

  • Greene, D.L. (1992). Vehicle use and fuel economy: how big is the rebound effect? The Energy Journal, 13, 117–143.

    Article  Google Scholar 

  • Greene, D. L., Kahn, J. R., & Gibson, R. C. (1999). Fuel economy rebound effects for U.S. household vehicles. The Energy Journal, 20, 1–31.

    Article  Google Scholar 

  • Greening, L.A., Greene, D.L., & Difiglio, C. (2000). Energy efficiency and consumption: the rebound effect: a survey. Energy Policy, 28, 389–401.

    Article  Google Scholar 

  • Grepperud, S., & Rasmussen, I. (2004). A general equilibrium assessment of rebound effects. Energy Economics, 26(2), 261–282.

    Article  Google Scholar 

  • Hanley, N.D., McGregor, P.G., Swales, J.K., & Turner, K. (2006). The impact of a stimulus to energy efficiency on the economy and the environment: a regional computable general equilibrium analysis. Renewable Energy, 31, 161–171.

    Article  Google Scholar 

  • Hanley, N.D., McGregor, P.G., Swales, J.K., & Turner, K. (2009). Do increases in energy efficiency improve environmental quality and sustainability? Ecological Economics, 68, 692–709.

    Article  Google Scholar 

  • Henly, J., Ruderman, H., & Levine, M.D. (1988). Energy saving resulting from the adoption of more efficient appliances: a follow-up. The Energy Journal, 9, 163–170.

    Google Scholar 

  • Herring, H. (1999). Does energy efficiency save energy? The debate and its consequences. Applied Energy, 63, 209– 226.

    Article  Google Scholar 

  • Herring, H. (2006). Energy efficiency-a critical view. Energy, 31, 10–20.

    Article  Google Scholar 

  • Jaccard, M., & Bataille, C. (2000). Estimating future elasticities of substitution for the rebound debate. Energy Policy, 28, 451–455.

    Article  Google Scholar 

  • Jeroen, C.J., & van den Bergh, M. (2011). Energy conservation more effective with rebound policy. Environmental and Resource Economics, 48, 43–58.

    Article  Google Scholar 

  • Jevons, W.S. (1865). The coal question: can Britain survive? (First published in 1865). Republished by Macmillan, London, 1906.

  • Jonas, N., & John, H. (2009). Quantifying the rebound effects of energy efficiency improvements and energy conserving behaviour in Sweden. Energy Efficiency, 2, 221–231.

    Article  Google Scholar 

  • Khazzoom, J.D. (1980). Economic implications of mandated efficiency in standards for household appliances. Energy Journal, 1(4), 21–40.

    Google Scholar 

  • Lovins, A.B. (1988). Energy saving from more efficient appliances: another view. Energy Journal, 9, 155–162.

    Article  Google Scholar 

  • Quirion, Ph. (2005). Distributional impacts of energy-efficiency certificates vs. taxes and standards. CIRED.

  • Reinhard, H., & Peter, B. (2000). The rebound effect for space heating: empirical evidence from Austria. Energy Policy, 28, 403–410.

    Article  Google Scholar 

  • Roy, J. (2000). The rebound effect: some empirical evidence from India. Energy Policy, 28, 433–438.

    Article  Google Scholar 

  • Sanne, C. (2000). Dealing with environmental savings in a dynamical economy—how to stop chasing your tail in the pursuit of sustainability. Energy Policy, 28(6–7), 487–496.

    Article  Google Scholar 

  • Saunders, H.D. (1992). The Khazzoom–Brookes postulate and neoclassical growth. The Energy Journal, 13(4), 131.

    Article  Google Scholar 

  • Saunders, H.D. (2000a). Does predicted rebound depend on distinguishing between energy and energy services? Energy Policy, 28(6–7), 497–500.

    Article  Google Scholar 

  • Saunders, H.D. (2000b). A view from the macro side: rebound, backfire and Khazzoom– Brookes. Energy Policy, 28(6–7), 439–449.

    Article  Google Scholar 

  • Saunders, H.D. (2008). Fuel conserving (and using) production functions. Energy Economics, 30, 2184–2235.

    Article  Google Scholar 

  • Saunders, H. (2014). Toward a neoclassical theory of sustainable consumption: eight golden age propositions. Ecological Economics, 105, 220–232.

    Article  Google Scholar 

  • Sorrell, S. (2009). Jevons’ Paradox revisited: the evidence for backfire from improved energy efficiency. Energy Policy, 37, 1456–1469.

    Article  Google Scholar 

  • Sorrell, S, & Dimitropoulos, J (2007). The rebound effect: microeconomic definitions, limitations and extensions. Ecological Economics, 65(3), 636–649.

    Article  Google Scholar 

  • Sorrell, S., Dimitropoulos, J., & Sommerville, M. (2009). Empirical estimates of the direct rebound effect: a review. Energy Policy, 37, 1356–1371.

    Article  Google Scholar 

  • Turner, K. (2008). A computable general equilibrium analysis of the relative price sensitivity required to induce rebound effects in response to an improvement in energy efficiency in the UK economy. Strathclyde Discussion Papers in Economics, No. 08-07.

  • Turner, K. (2009). Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK Economy. Energy Economics, 31, 648–666.

    Article  Google Scholar 

  • Wei, T. (2007). Impact of energy efficiency gains on output and energy use with Cobb-Douglas production function. Energy Policy, 35, 2023–2030.

  • Wei, T. (2010). A general equilibrium view of global rebound effects. Energy Economics, 32, 661–672.

  • Wigley, K.J. (1997). Assessment of the importance of the rebound effect. Paper presented at the 18th North American Conference of the USAEE/IAEE, San Francisco.

Download references

Acknowledgments

We are grateful for the substantive and constructive comments and suggestions made by two anonymous reviewers. Of course, all errors are the authors’s own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etidel Labidi.

Appendices

Appendix A

Recall the Eqs. 11 and 27

$$E_{g}=\left( \frac{R}{P_{E}}\right)\left( \frac{\alpha\beta A}{\alpha+\beta A}\right) $$
$$ A=\left[\frac{\alpha\theta}{\beta(1-\theta)} \right]^{\frac{1}{1+\rho}} \left[\frac{e_{q}}{e_{g}} \right]^{\frac{\rho}{1+\rho}} $$

Then,

$$\begin{array}{@{}rcl@{}} \upsilon^{e_{g}}_{E_{g}}&=& \frac{\partial E_{g}}{\partial e_{g}} \frac{e_{g}}{E_{g}} \end{array} $$
(119)
$$\begin{array}{@{}rcl@{}} &=&\left( \frac{\alpha \beta R}{P_{E}}\right)\left( \frac{\displaystyle\frac{\partial A}{\partial e_{g}}(\alpha+\beta A)-A \beta \displaystyle\frac{\partial A}{\partial e_{g}}}{(\alpha+\beta A)^{2}} \right)\left( \frac{e_{g}}{E_{g}}\right)\\ \end{array} $$
(120)

Or

$$\begin{array}{@{}rcl@{}} \frac{\partial A}{\partial e_{g}}&=& \left( \frac{\theta}{1-\theta} \right)^{\frac{1}{1+\rho}}e_{q}^{\frac{\rho}{1+\rho}} \left( \frac{\rho}{1+\rho} \right)\left( -\frac{1}{{e_{g}^{2}}}\right) \left( \frac{1}{e_{g}}\right)^{\frac{\rho}{1+\rho}-1} \end{array} $$
(121)
$$\begin{array}{@{}rcl@{}} &=&-\left( \frac{\rho}{1+\rho} \right) \frac{A}{e_{g}} \end{array} $$
(122)

Next, insert the Eq. 122 into (120)

$$\begin{array}{@{}rcl@{}} \upsilon^{e_{g}}_{E_{g}}&=& \left( \frac{\alpha \beta R}{P_{E}}\right)\left( \frac{-\displaystyle\frac{\rho}{1+\rho}\; \displaystyle\frac{A}{e_{g}}\;(\alpha+\beta A)+A \beta \displaystyle\frac{\rho}{1+\rho} \displaystyle\;\frac{A}{e_{g}}}{(\alpha+\beta A)^{2}} \right)\\ &&\times\left( \frac{e_{g}}{E_{g}}\right) \end{array} $$
(123)
$$\begin{array}{@{}rcl@{}} &=&\left( \frac{R}{P_{E}}\right) \left( \frac{\alpha \beta A}{\alpha+\beta A} \right)\left( \displaystyle \frac{-\displaystyle \frac{\rho}{1+\rho}\displaystyle\frac{\alpha}{e_{g}}}{\alpha+\beta A} \right)\left( \frac{e_{g}}{E_{g}}\right) \end{array} $$
(124)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{E_{g}}{e_{g}}\right) \left( -\frac{\rho}{1+\rho} \right)\left( \frac{\alpha}{\alpha+\beta A} \right) \left( \frac{e_{g}}{E_{g}}\right) \end{array} $$
(125)
$$\begin{array}{@{}rcl@{}} &=&\left( -\frac{\rho}{1+\rho} \right)\left( \frac{\alpha}{\alpha+\beta A} \right) \end{array} $$
(126)

Appendix B

Recall the Eq. 12

$$ E_{q}=\left( \frac{R}{P_{E}}\right)\left( \frac{\alpha\beta}{\alpha+\beta A}\right) $$

Then,

$$\begin{array}{@{}rcl@{}} \upsilon^{e_{g}}_{E_{q}}&=& \frac{\partial E_{q}}{\partial e_{g}} \frac{e_{g}}{E_{g}} \end{array} $$
(127)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{\alpha \beta R}{P_{E}}\right)\left( \frac{-\beta \displaystyle\frac{\partial A}{e_{g}}}{(\alpha+\beta A)^{2}} \right)\left( \frac{e_{g}}{E_{q}}\right) \end{array} $$
(128)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{R}{P_{E}}\right) \left( \frac{\alpha \beta} {\alpha+\beta A} \right) \left( \frac{\frac{\rho}{1+\rho} \frac{\beta A}{e_{g}}}{\alpha+\beta A} \right) \left( \frac{e_{g}}{E_{q}}\right) \end{array} $$
(129)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{E_{q}}{e_{g}}\right) \left( \frac{\rho}{1+\rho} \right)\left( \frac{\beta A}{\alpha+\beta A} \right) \left( \frac{e_{g}}{E_{q}}\right) \end{array} $$
(130)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{\rho}{1+\rho} \right)\left( \frac{\beta A}{\alpha+\beta A} \right) \end{array} $$
(131)

Appendix C

Recall the Eq. 28

$$G=\left( \frac{R}{P_{E}}\;\frac{\alpha\beta A}{\alpha+\beta A}\right) e_{g}$$

Then,

$$\begin{array}{@{}rcl@{}} \upsilon^{e_{g}}_{G}&=&\frac{\partial G}{\partial e_{g}} \frac{e_{g}}{G}=\left( \frac{R \alpha \beta}{P_{E}}\right) \end{array} $$
(132)
$$\begin{array}{@{}rcl@{}} &&\times\left( \frac{\left( -\displaystyle\frac{\rho}{1+\rho} \displaystyle\frac{A}{e_{g}} e_{g}+A\right)(\alpha+\beta A )-Ae_{g}\beta\left( -\displaystyle\frac{\rho}{1+\rho}\displaystyle\frac{A}{e_{g}} \right)}{(\alpha+\beta A)^{2}} \right)\\ &&\times\left( \frac{e_{g}}{G}\right)= \left( \frac{R \alpha \beta}{P_{E}}\right)\left( \frac{\displaystyle\frac{A}{1+\rho} (\alpha+\beta A )+A^{2}\beta \displaystyle\frac{\rho}{1+\rho}}{(\alpha+\beta A)^{2}} \right) \left( \frac{e_{g}}{G}\right)\\&=&\left( \frac{R \alpha \beta}{P_{E}}\right) \left( \displaystyle\frac{A}{(1+\rho)(\alpha-\beta A)} +\frac{A^{2}\beta \rho}{(1+\rho)(\alpha-\beta A)^{2}} \right)\\ &&\times\left( \frac{R\alpha \beta}{P_{E}} \frac{A e_{g}}{\alpha+\beta A} \right) e_{g}\\ &=&\displaystyle\frac{1}{1+\rho}+\displaystyle\frac{A \beta\rho}{(1+\rho)(\alpha+\beta\rho)} \\&=&\left( \displaystyle\frac{1}{1+\rho} \right)\left( 1+ \displaystyle\frac{A \beta \rho}{\alpha+\beta A}\right) \end{array} $$
(133)
$$\begin{array}{@{}rcl@{}} \upsilon^{e_{g}}_{G}-1&=&\displaystyle\frac{1}{1+\rho} +\left( \frac{\rho}{1+\rho}\right) \left( \displaystyle\frac{A \beta \rho}{\alpha+\beta A}\right) -1 \end{array} $$
(134)
$$\begin{array}{@{}rcl@{}} &=& \frac{\alpha+\beta A+\rho \beta A-(1+\rho)(\alpha+\beta A)}{(1+\rho)(\alpha+\beta A)} \end{array} $$
(135)
$$\begin{array}{@{}rcl@{}} &=&-\left( \displaystyle\frac{\rho}{1+\rho}\right)\left( \displaystyle\frac{\alpha}{\alpha+\beta A}\right) \end{array} $$
(136)
$$\begin{array}{@{}rcl@{}} &=& \upsilon^{e_{g}}_{E_{g}} \end{array} $$
(137)

Appendix D

Recall the Eq. 30

$$P_{G}=\frac{P_{E}}{\alpha e_{g}} $$

Then,

$$ {\nu}^{e_{g}}_{P_{G}}=\frac{\partial P_{G}}{\partial e_{g}}\frac{e_{g}}{P_{G}} $$
(138)
$$ = -\frac{P_{E}}{\alpha {e_{g}^{2}}}\frac{e_{g}}{P_{G}} $$
(139)
$$ = -\frac{P_{E}}{\alpha {e_{g}^{2}}} \; \frac{e_{g}}{\frac{P_{E}}{\alpha e_{g}}}=-1 $$
(140)

Appendix E

Recall the Eq. 19

$$D_{G}=\frac{R\beta A}{\alpha+\beta A} $$

Then,

$$\begin{array}{@{}rcl@{}} \nu^{e_{g}}_{D_{G}}&=& \frac{\partial D_{G}}{\partial e_{g}}\frac{e_{g}}{D_{G}} \end{array} $$
(141)
$$\begin{array}{@{}rcl@{}} &=& R\beta \left[\displaystyle\frac{\displaystyle\frac{-\rho}{1+\rho}\;\displaystyle\frac{A}{e_{g}}(\alpha+\beta A) +A\beta\displaystyle\frac{\rho}{1+\rho}\;\displaystyle\frac{A}{e_{g}}}{(\alpha+\beta A)^{2}}\right]\left( \frac{e_{g}}{D_{G}}\right) \end{array} $$
(142)
$$\begin{array}{@{}rcl@{}} &=&\left[ R\beta\frac{\rho}{1+\rho}\displaystyle\frac{A}{e_{g}}\left( \frac{\beta A-\alpha-\beta A} {(\alpha+\beta A)^{2}} \right)\right]\left( \frac{e_{g}}{D_{G}}\right) \end{array} $$
(143)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{R\beta A}{\alpha+\beta A}\right) \left( \frac{1}{e_{g}}\right) \left( \frac{\rho}{1+\rho}\right)\left( \frac{- \alpha}{\alpha+\beta A}\right)\left( \frac{e_{g}}{D_{G}}\right) \end{array} $$
(144)
$$\begin{array}{@{}rcl@{}} &=&-\left( \displaystyle\frac{\rho}{1+\rho}\right)\left( \displaystyle\frac{\alpha}{\alpha+\beta A}\right) \end{array} $$
(145)

Appendix F

Recall the Eq. 29

$$Q= \left( \frac{R}{P_{E}}\;\frac{\alpha\beta}{\alpha+\beta A}\right)e_{q} $$

Then,

$$\begin{array}{@{}rcl@{}} \nu^{e_{g}}_{Q}&=&\frac{\partial Q}{\partial e_{g}}\frac{e_{g}}{Q} \end{array} $$
(146)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{R\alpha\beta e_{q}}{P_{E}} \right) \left( \frac{\displaystyle\frac{\rho}{1+\rho}\beta \displaystyle\frac{A}{e_{g}}}{(\alpha+\beta A )^{2}}\right) \left( \frac{e_{g}}{Q} \right) \end{array} $$
(147)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{R \alpha\beta}{\alpha+\beta A}\;\frac{e_{q}}{P_{E}}\right) \left( \frac{\rho}{1+\rho} \right) \left( \frac{\beta}{\alpha+\beta A}\right) \left( \frac{A}{e_{g}}\right) \left( \frac{e_{g}}{Q} \right) \end{array} $$
(148)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{\rho}{1+\rho}\right) \left( \frac{\beta A}{\alpha+\beta A}\right) \end{array} $$
(149)

Appendix G

Recall the Eq. 21

$$D_{Q}=\frac{R \alpha}{\alpha+\beta A} $$

Then,

$$\begin{array}{@{}rcl@{}} \nu^{e_{g}}_{D_{Q}}&=&\frac{\partial D_{Q}}{\partial e_{g}} \frac{e_{g}}{D_{Q}} \end{array} $$
(150)
$$\begin{array}{@{}rcl@{}} &=& R\alpha \left( \frac{\beta \displaystyle \frac{\rho}{1+\rho} \displaystyle \frac{A}{e_{g}}} {(\alpha+\beta A)^{2}}\right)\left( \frac{e_{g}}{D_{Q}} \right) \end{array} $$
(151)
$$\begin{array}{@{}rcl@{}} &=& \left( \frac{R \alpha} {\alpha+\beta A}\right) \left( \frac{\rho}{1+\rho}\right)\left( \frac{\beta A}{\alpha+\beta A} \right)\left( \frac{1}{e_{g}}\right)\left( \frac{e_{g}}{D_{Q}} \right) \end{array} $$
(152)
$$\begin{array}{@{}rcl@{}} &=&\left( \frac{\rho}{1+\rho}\right)\left( \frac{\beta A}{\alpha+\beta A}\right) \end{array} $$
(153)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdessalem, T., Labidi, E. Economic analysis of the energy-efficient household appliances and the rebound effect. Energy Efficiency 9, 605–620 (2016). https://doi.org/10.1007/s12053-015-9387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-015-9387-6

Keywords

Navigation