Energy Efficiency

, Volume 9, Issue 2, pp 563–589 | Cite as

How ICT investment influences energy demand in South Korea and Japan

  • Nabaz T. KhayyatEmail author
  • Jongsu Lee
  • Eunnyeong Heo
Original Article


This empirical study examines substitute/complementary relationships in the demands for ICT capital, non-ICT capital, energy, materials, and labor in the industrial sectors in Japan and South Korea during 1973–2006 and 1980–2009, respectively. In doing so, a dynamic factor demand model is applied to link intertemporal production decisions by explicitly recognizing that the level of certain factors of production (referred to as quasi-fixed factors: ICT and non-ICT capital) cannot be changed without incurring so-called adjustment costs, defined in terms of forgone output from current production. Special emphasis is on the effects of ICT investment on energy use through the substitute/complementary relationships. This study quantifies how ICT capital investment in South Korea and Japan affects industrial energy demand. We find that ICT and non-ICT capital investment serve as substitutes for the inputs of labor and energy use. The results also demonstrate significant cost differences across industries in both countries.


Dynamic factor demand Panel data ICT investment Energy demand 

JEL Classification

C32 C33 Q41 


  1. Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable & Sustainable Energy Reviews, 15(1), 150–168. doi: 10.1016/j.rser.2010.09.003.CrossRefGoogle Scholar
  2. Adeyemi, O. I., & Hunt, L. C. (2007). Modelling OECD industrial energy demand: asymmetric price responses and energy-saving technical change. Energy Economics, 29(4), 693–709. doi: 10.1016/j.eneco.2007.01.007.CrossRefGoogle Scholar
  3. Agnolucci, P. (2009). The energy demand in the British and German industrial sectors: heterogeneity and common factors. Energy Economics, 31(1), 175–187. doi: 10.1016/j.eneco.2008.08.005.CrossRefGoogle Scholar
  4. Allan, G., Hanley, N., McGregor, P., Swales, K., & Turner, K. (2007). The impact of increased efficiency in the industrial use of energy: a computable general equilibrium analysis for the United Kingdom. Energy Economics, 29(4), 779–798. doi: 10.1016/j.eneco.2006.12.006.CrossRefGoogle Scholar
  5. Amato, L., & Amato, C. (2000). The impact of high tech production techniques on productivity and profitability in selected U.S. manufacturing industries. Review of Industrial Organization, 16(4), 327–342. doi: 10.1023/A:1007800121100.CrossRefGoogle Scholar
  6. Arnberg, S., & Bjorner, T. B. (2007). Substitution between energy, capital and labour within industrial companies: a micro panel data analysis. Resource and Energy Economics, 29(2), 122–136. doi: 10.1016/j.reseneeco.2006.01.001.CrossRefGoogle Scholar
  7. Arnold, J. M., Nicoletti, G., & Scarpetta, S. (2011). Regulation, resource reallocation and productivity growth. European Investment Bank Papers, 16(1), 90–115.Google Scholar
  8. Atkinson, R. D., & McKay, A. (2007). Digital prosperity. Understanding the economic benefits of the information technology revolution. Accessed 20 Oct 2013.
  9. Berndt, E. R., & Morrison, C. J. (1981). Dynamic models of energy demand: an assessment and comparison. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring natural resource substitution: revisions of papers originally presented at a conference held in Key Biscayne, Florida. Cambridge: MIT Press.Google Scholar
  10. Berndt, E. R., & Morrison, C. J. (1995). High-tech capital formation and economic performance in U.S. manufacturing industries: an exploratory analysis. Journal of Econometrics, 65(1), 9–43. doi: 10.1016/0304-4076(94)01596-r.CrossRefGoogle Scholar
  11. Berndt, E. R., Morrison, C. J., & Watkins, G. C. (1981). Dynamic models of energy demand: an assessment and comparison. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring national resource substitution. Cambridge: MIT Press.Google Scholar
  12. Bessen, J. (2002). Technology adoption costs and productivity growth: the transition to information technology. Review of Economic Dynamics, 5(2), 443–469. doi: 10.1006/redy.2001.0152.CrossRefGoogle Scholar
  13. Bhattacharyya, S. C., & Timilsina, G. R. (2009). Energy demand models for policy formulation: a comparative study of energy demand models (policy research working paper WPS4866). World Bank. Accessed 12 Apr 2013.
  14. Cho, Y., Lee, J., & Kim, T.-Y. (2007). The impact of ICT investment and energy price on industrial electricity demand: dynamic growth model approach. Energy Policy, 35(9), 4730–4738. doi: 10.1016/j.enpol.2007.03.030.CrossRefGoogle Scholar
  15. Cho, W. G., Nam, K., & Pagan, J. A. (2004). Economic growth and interfactor/interfuel substitution in Korea. Energy Economics, 26(1), 31–50. doi: 10.1016/j.eneco.2003.04.001.CrossRefGoogle Scholar
  16. Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 55(1), 28–45. doi: 10.2307/1927992.CrossRefGoogle Scholar
  17. Chun, H., & Nadiri, M. I. (2008). Decomposing productivity growth in the U.S. computer industry. The Review of Economics and Statistics, 90(1), 174–180. doi: 10.1162/rest.90.1.174.CrossRefGoogle Scholar
  18. Dargay, J. M. (1983). The demand for energy in Swedish manufacturing-industries. Scandinavian Journal of Economics, 85(1), 37–51. doi: 10.2307/3439909.CrossRefGoogle Scholar
  19. Denny, M., Fuss, M. A., & Waverman, L. (1981). Substitution possibilities for energy: evidence from US and Canadian manufacturing industries. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring natural resource substitution (pp. 230–288). Cambridge: MIT Press.Google Scholar
  20. Diewert, W. E. (1971). An application of the Shephard duality theorem: a generalized Leontief production function. Journal of Political Economy, 79(3), 481–507. doi: 10.2307/1830768.CrossRefGoogle Scholar
  21. Diewert, W. E. (1974). Functional forms for revenue and factor requirements functions. International Economic Review, 15(1), 119. doi: 10.2307/2526093.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Diewert, W. E., & Wales, T. J. (1987). Flexible functional forms and global curvature conditions. Econometrica, 55(1), 43–68. doi: 10.2307/1911156.MathSciNetCrossRefzbMATHGoogle Scholar
  23. EIA (2011). International energy outlook. U.S. energy information administration. US Energy Information Administration. Accessed 8 Sep 2013.
  24. Eisner, R., Strotz, R. H., & Post, G. R. (1963). Determinants of business investment. Englewood Cliffs: Prentice-Hall.Google Scholar
  25. Epstein, L. G. (1981). Duality-theory and functional forms for dynamic factor demands. Review of Economic Studies, 48(1), 81–95. doi: 10.2307/2297122.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Erdmann, L., & Hilty, L. M. (2010). Scenario analysis exploring the macroeconomic impacts of information and communication technologies on greenhouse gas emissions. Journal of Industrial Ecology, 14(5), 826–834. doi: 10.1111/j.1530-9290.2010.00277.x.CrossRefGoogle Scholar
  27. Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic-factor model: identification and estimation. The Review of Economics and Statistics, 82(4), 540–554. doi: 10.1162/003465300559037.CrossRefzbMATHGoogle Scholar
  28. Friedemann, M., Staake, T., & Weiss, M. ICT for green: how computers can help us to conserve energy. In Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, Passau, Germany, 2010 Google Scholar
  29. Fukao, K., Miyagawa, T., Mukai, K., Shinoda, Y., & Tonogi, K. (2009a). Intangible investment in Japan: measurement and contribution to economic growth. Review of Income and Wealth, 55(3), 717–736. doi: 10.1111/j.1475-4991.2009.00345.x.CrossRefGoogle Scholar
  30. Fukao, K., Miyagawa, T., & Pyo, H. K. (2009b). Estimates of multifactor productivity, ICT contributions and resource reallocation effects in Japan and Korea (RIETI Working Paper 09-E-021). The Research Institute of Economy, Trade and Industry. Accessed 12 May 2013.
  31. Galeotti, M. (1990). Specification of the technology for neoclassical investment theory—testing the adjustment costs approach. The Review of Economics and Statistics, 72(3), 471–480. doi: 10.2307/2109355.CrossRefGoogle Scholar
  32. Galeotti, M. (1996). The intertemporal dimension of neoclassical production theory. Journal of Economic Surveys, 10(4), 421–460. doi: 10.1111/j.1467-6419.1996.tb00019.x.MathSciNetCrossRefGoogle Scholar
  33. Gallant, A. R. (2008). Nonlinear statistical models (Wiley series in probability and statistics): Wiley.Google Scholar
  34. GeSI SMARTer 2020 (2012). Smarter 2020: the role of ICT in driving a sustainable future. Global e-Sustainability Initiative. Accessed 20 Oct 2013.
  35. Gordon, R. J. (2000). Does the ‘new economy’ measure up to the great inventions of the past. Journal of Economic Perspectives, 14(4), 49–74.Google Scholar
  36. Groth, C. (2005). Estimating UK capital adjustment costs (working paper 258). Bank of England. Accessed 21 Apr 2013.
  37. Gust, C., & Marquez, J. (2004). International comparisons of productivity growth: the role of information technology and regulatory practices. Labour Economics, 11(1), 33–58.CrossRefGoogle Scholar
  38. Hartman, R. S. (1979). Frontiers in energy demand modeling. Annual Review of Energy, 4(1), 433–466. doi: 10.1146/ Scholar
  39. Hempell, T. (2005). What’s spurious, what’s real? Measuring the productivity impacts of ICT at the firm-level. Empirical Economics, 30(2), 427–464. doi: 10.1007/s00181-005-0248-6.CrossRefGoogle Scholar
  40. Heshmati, A. (2013). Demand, customer base-line and demand response in the electricity market: a survey. Journal of Economic Surveys. doi: 10.1111/joes.12033.Google Scholar
  41. Hong, H.-J. (2011). The study on the impact of IT investment on demand for labor. International Institute of Informatics and Systemics.Google Scholar
  42. IEA (2009). Progress with implementing energy efficiency policies in the G8. International Energy Agency.Google Scholar
  43. IEA (2011). Climate & electricity annual: data and analysis. International Energy Agency. Accessed 20 Jun 2013.
  44. Indjikian, R., & Siegel, D. S. (2005). The impact of investment in it on economic performance: implications for developing countries. World Development, 33(5), 681–700. doi: 10.1016/j.worlddev.2005.01.004.CrossRefGoogle Scholar
  45. Ishida, H. (2015). The effect of ICT development on economic growth and energy consumption in Japan. Telematics and Informatics, 32(1), 79–88. doi: 10.1016/j.tele.2014.04.003.CrossRefGoogle Scholar
  46. Jorgenson, D. W. (1963). Capital theory and investment behavior. The American Economic Review, 53(2), 247–259. doi: 10.2307/1823868.Google Scholar
  47. Jorgenson, D. W., Ho, M. S., & Stiroh, K. J. (2008). A retrospective look at the U.S. productivity growth resurgence. The Journal of Economic Perspectives, 22(1), 3–24. doi: 10.1257/089533008783601315.CrossRefGoogle Scholar
  48. Jorgenson, D. W., & Stiroh, K. J. (1999). Information technology and growth. American Economic Review, 89(2), 109–115. doi: 10.1257/aer.89.2.109.CrossRefGoogle Scholar
  49. Kamerschen, D. R., & Porter, D. V. (2004). The demand for residential, industrial and total electricity, 1973–1998. Energy Economics, 26(1), 87–100. doi: 10.1016/S0140-9883(03)00033-1.CrossRefGoogle Scholar
  50. Kanamori, T., & Motohashi, K. (2007). Information technology and economic growth: comparison between Japan and Korea. Research Institute of Economy, Trade and Industry (RIETI). Accessed 13 May 2013.
  51. Kander, A., & Schön, L. (2007). The energy-capital relation—Sweden 1870–2000. Structural Change and Economic Dynamics, 18(3), 291–305. doi: 10.1016/j.strueco.2007.02.002.CrossRefGoogle Scholar
  52. Ketteni, E., Mamuneas, T., & Pashardes, P. (2013). ICT and energy use: patterns of substitutability and complementarity in production. Cyprus Economic Policy Review, 7(1), 63–86.Google Scholar
  53. Khayyat, N. T. (2013). Exploring demand for energy in the South Korean industries. Zurich: SMC University.Google Scholar
  54. Khayyat, N. T., & Heshmati, A. (2014). Production risk, energy use efficiency and productivity of Korean industries. Accessed 12 May 2014.
  55. Kim, S. T. (1997). The role of local public sectors in regional economics growth in Korea. Asian Economic Journal, 11(2), 155–168.CrossRefGoogle Scholar
  56. Kim, S. J. (2002). Development of information technology industry and sources of economic growth and productivity in Korea. Journal of Economic Research-Seoul, 7(2), 177–214.Google Scholar
  57. Kim, J., & Heo, E. (2013). Asymmetric substitutability between energy and capital: evidence from the manufacturing sectors in 10 OECD countries. Energy Economics, 40(0), 81–89. doi: 10.1016/j.eneco.2013.06.014.CrossRefGoogle Scholar
  58. Kim, J., & Heo, E. (2014). Effect of ICT capital on the demands for labor and energy in major industries of Korea, US, and UK. Environmental and Resource Economics Review, 23(1), 91–32.CrossRefGoogle Scholar
  59. Kim, H.-G., & Oh, J. H. (2004). The role of IT on the Korean economy under IMF control. Journal of Policy Modeling, 26(2), 181–190. doi: 10.1016/j.jpolmod.2003.12.001.CrossRefGoogle Scholar
  60. Kim, M., & Park, Y. (2009). The changing pattern of industrial technology linkage structure of Korea: did the ICT industry play a role in the 1980s and 1990s? Technological Forecasting and Social Change, 76(5), 688–699. doi: 10.1016/j.techfore.2008.03.009.CrossRefGoogle Scholar
  61. Koetse, M. J., de Groot, H. L. F., & Florax, R. J. G. M. (2008). Capital-energy substitution and shifts in factor demand: a meta-analysis. Energy Economics, 30(5), 2236–2251. doi: 10.1016/j.eneco.2007.06.006.CrossRefGoogle Scholar
  62. Koschel, H. (2000). Substitution elasticities between capital, labour, material, electricity and fossil fuels in German producing and service sectors (discussion papers 00–31). Accessed 12 May 2013.
  63. Lau, L. J. (1986). Functional forms in econometric model building. In G. Zvi, & D. I. Michael (Eds.), Handbook of econometrics (vol. 3, pp. 1515–1566): Elsevier.Google Scholar
  64. Lee, W. N., Kim, H. J., Park, J. B., Roh, J. H., & Cho, K. S. (2012). An economic evaluation of the energy efficiency programs in Korea. Journal of International Council on Electrical Engineering, 2(2), 219–224.CrossRefGoogle Scholar
  65. Liu, Y. (2009). Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model). Energy, 34(11), 1846–1854. doi: 10.1016/ Scholar
  66. Lu, I. J., Lin, S. J., & Lewis, C. (2007). Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea. Energy Policy, 35(6), 3226–3235. doi: 10.1016/j.enpol.2006.11.003.CrossRefGoogle Scholar
  67. Lucas, R. E. (1967). Adjustment costs and the theory of supply. The Journal of Political Economy, 75(4), 321–334.CrossRefGoogle Scholar
  68. Matteucci, N., O’Mahony, M., Robinson, C., & Zwick, T. (2005). Productivity, workplace performance and ICT: industry and firm-level evidence for Europe and the US. Scottish Journal of Political Economy, 52(3), 359–386. doi: 10.1111/j.0036-9292.2005.00349.x.CrossRefGoogle Scholar
  69. McFadden, D. (1978). Modelling the choice of residential location. California: Institute of Transportation Studies, University of California.Google Scholar
  70. Melville, N. P. (2010). Information systems innovation for environmental sustainability. MIS Quarterly, 34(1), 1–21.MathSciNetGoogle Scholar
  71. Morana, C. (2007). Factor demand modelling: the theory and the practice. Applied Mathematical Sciences, 1(31), 1519–1549.MathSciNetzbMATHGoogle Scholar
  72. Morrison, C. J., & Berndt, E. R. (1981). Short-run labor productivity in a dynamic model. Journal of Econometrics, 16(3), 339–365. doi: 10.1016/0304-4076(81)90034-8.CrossRefGoogle Scholar
  73. Mun, S. B. (2002). Computer adjustment costs: is quality improvement important?
  74. Mun, S. B. (2012). Computer adjustment costs: is quality improvement important? International Telecommunications Policy Review, 19(3), 23–51.Google Scholar
  75. Mun, S. B., & Nadiri, M. I. (2002). Information technology externalities: empirical evidence from 42 US industries (NBER Working Paper w9272). National Bureau of Economic Research Working Paper Series. Accessed 23 Mar 2012.
  76. Nadiri, M. I., & Prucha, I. R. (1986). A comparison of alternative methods for the estimation of dynamic factor demand models under non-static expectations. Journal of Econometrics, 33(1), 187–211.Google Scholar
  77. Nadiri, M. I., & Prucha, I. R. (1990). Dynamic factor demand models, productivity measurement, and rates of return: theory and an empirical application to the US bell system. Structural Change and Economic Dynamics, 1(2), 263–289.CrossRefGoogle Scholar
  78. Nadiri, M. I., & Prucha, I. R. (1996). Estimation of the depreciation rate of physical and R&D capital in the U.S. total manufacturing sector. Economic Inquiry, 34(1), 43–56. doi: 10.1111/j.1465-7295.1996.tb01363.x.CrossRefGoogle Scholar
  79. Nadiri, M. I., & Prucha, I. R. (1999). Dynamic factor demand models and productivity analysis (NBER working paper 7079). National Bureau of Economic Research Working Paper Series. Accessed 23 Mar 2012.
  80. Nadiri, M. I., & Prucha, I. R. (2001). Dynamic factor demand models and productivity analysis. In C. R. Hulten, E. R. Dean, & M. J. Harper (Eds.), New developments in productivity analysis (pp. 103–172). Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  81. Nadiri, M. I., & Rosen, S. (1969). Interrelated factor demand functions. The American Economic Review, 59(4), 457–471.Google Scholar
  82. O’Mahony, M., & Timmer, M. P. (2009). Output, input and productivity measures at the industry level: the EU KLEMS database. The Economic Journal, 119(538), F374–F403. doi: 10.1111/j.1468-0297.2009.02280.x.CrossRefGoogle Scholar
  83. Oh, I., Lee, J.-D., & Heshmati, A. (2008). Total factor productivity in Korean manufacturing industries. Global Economic Review, 37(1), 23–50. doi: 10.1080/12265080801911907.CrossRefGoogle Scholar
  84. Oliner, S. D., & Sichel, D. E. (2000). The resurgence of growth in the late 1990s: is information technology the story? (Working paper 2000–20). FEDS Working Paper. Accessed 14 Jul 2013.
  85. Park, P. (2000). A reflection on the East Asian development model: comparison of the South Korean and Taiwanese experiences. In R. Frank-Jurgen (Ed.), Thailand, Japan, and the East Asian development model (pp. 141–168). London: Macmillan.Google Scholar
  86. Park, S. (2014). Elasticity of substitution between ICT capital and labor: its implications on the creative economy in Korea. Paper presented at the 2014 Joint Conference of the Korean Economic Association, Sungkyunkwan University, Seoul, Korea, Feb 2Google Scholar
  87. Park, G., & Park, Y. (2003). An empirical analysis of the inter-industrial spillover effect of information and communications technology on cost and labor—the case of Korea. Journal of Scientific & Industrial Research, 62(3), 157–167.Google Scholar
  88. Pilat, D., & Lee, F. C. (2001). Productivity growth in ICT-producing and ICT-using industries: A source of growth differentials in the OECD? (OECD working papers 2001/04). OECD Science, Technology and Industry. 10.1787/774576300121. Accessed 3 Jan 2014.
  89. Pindyck, R. S., & Rotemberg, J. J. (1983). Dynamic factor demands and the effects of energy price shocks. American Economic Review, 73(5), 1066–1079.Google Scholar
  90. Røpke, I., & Christensen, T. H. (2012). Energy impacts of ICT—insights from an everyday life perspective. Telematics and Informatics, 29(4), 348–361. doi: 10.1016/j.tele.2012.02.001.CrossRefGoogle Scholar
  91. Rouvinen, P. (1999). R&D spillovers among Finnish manufacturing firms: a cost function estimation with random coefficients. Discussion papers no. 686. The Research Institute of the Finnish Economy.Google Scholar
  92. Sadorsky, P. (2012). Information communication technology and electricity consumption in emerging economies. Energy Policy, 48(0), 130–136. doi: 10.1016/j.enpol.2012.04.064.CrossRefGoogle Scholar
  93. Schulte, P., Welsch, H., & Rexhäuser, S. (2014). ICT and the demand for energy: evidence from OECD countries. Environmental and Resource Economics, 1–28, doi: 10.1007/s10640-014-9844-2.
  94. Seungdo, K., Hyeon-Kyeong, K., & Hyoung-Jun, K. Climate change and ICTs. In Telecommunications Energy Conference, 2009. INTELEC 2009. 31st International, October 2009 (pp. 1–4). doi: 10.1109/INTLEC.2009.5351786.
  95. Shephard, R. W. (1953). Cost and production functions. Princeton: Princeton University Press.zbMATHGoogle Scholar
  96. Siegel, D. (1997). The impact of computers on manufacturing productivity growth: a multiple-indicators, multiple-causes approach. The Review of Economics and Statistics, 79(1), 68–78. doi: 10.1162/003465397556548.CrossRefGoogle Scholar
  97. Smyth, R., Narayan, P. K., & Shi, H. (2011). Substitution between energy and classical factor inputs in the Chinese steel sector. Applied Energy, 88(1), 361–367. doi: 10.1016/j.apenergy.2010.07.019.CrossRefGoogle Scholar
  98. Stiroh, K. J. (2002). Are ICT spillovers driving the new economy? Review of Income and Wealth, 48(1), 33–57. doi: 10.1111/1475-4991.00039.CrossRefGoogle Scholar
  99. Stock, J. H., & Watson, M. W. (1989). New indexes of coincident and leading economic indicators. In O. Blanchard & S. Fischer (Eds.), NBER macroeconomics annual vol. 4 (pp. 351–409). Cambridge: MIT Press.Google Scholar
  100. Takase, K., & Murota, Y. (2004). The impact of IT investment on energy: Japan and US comparison in 2010. Energy Policy, 32(11), 1291–1301. doi: 10.1016/S0301-4215(03)00097-1.CrossRefGoogle Scholar
  101. Thompson, H. (2006). The applied theory of energy substitution in production. Energy Economics, 28(4), 410–425. doi: 10.1016/j.eneco.2005.01.005.CrossRefGoogle Scholar
  102. Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  103. Uchiyama, Y. (2002). Present efforts of saving energy and future energy demand/supply in Japan. Energy Conversion and Management, 43(9–12), 1123–1131. doi: 10.1016/S0196-8904(02)00003-1.CrossRefGoogle Scholar
  104. Varian, H. R. (1992). Macroeconomic analysis (3rd ed.). New York: Norton & Company, Inc.Google Scholar
  105. Walker, W. (1985). Information technology and the use of energy. Energy Policy, 13(5), 458–476. doi: 10.1016/0301-4215(85)90102-8.CrossRefGoogle Scholar
  106. Walker, W. (1986). Information technology and energy supply. Energy Policy, 14(6), 466–488. doi: 10.1016/0301-4215(86)90001-7.CrossRefGoogle Scholar
  107. Watanabe, C., Kishioka, M., & Carvajal, C. A. (2005). IT substitution for energy leads to a resilient structure for a survival strategy of Japan’s electric power industry. Energy Policy, 33(8), 1069–1084. doi: 10.1016/j.enpol.2003.11.007.CrossRefGoogle Scholar
  108. Pyo, H. K., Rhee, K. H., & Chun, H. (2012). Asia KLEMS growth and productivity accounts—version 1.0 draft and proposal: part I methodology. Paper presented at the Second World KLEMS Conference, Harvard University in Cambridge, Massachusetts, August 9–10, 2012Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Technology Management, Economics, and Policy Program, College of EngineeringSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Energy Resources Engineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations