Skip to main content

Advertisement

Log in

An empirical study on energy efficiency improving capacity: the case of fifteen countries

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

The problem of energy shortage is exacerbated by energy waste and low efficiency. Energy efficiency has become a popular research topic, but little research has been performed on the dynamic work of improving energy efficiency. In this paper, energy efficiency improving capacity is first defined to reveal this dynamic work. An evaluation index system is built before a combined weight multilayer evaluation model is applied to calculate the energy efficiency improving capacities of 15 countries from 2001 to 2010. In addition, the evolution equation for energy efficiency improvement driving force is constructed to analyze the changing trend of energy efficiency improving capacity. Next, the stages of the 15 countries’ energy efficiency improving capacities are analyzed through the inflection points. Finally, related conclusions are considered according to the analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbassi, H., Mashayek, F., & Jacobs, G. B. (2014). Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method. Computers & Fluids, 98, 152–163.

    Article  MathSciNet  Google Scholar 

  • Al-Obaidan, A. M., & Scully, G. W. (1992). Efficiency differences between private and state-owned enterprises in the international petroleum industry. Applied Economics, 24(2), 237–246.

    Article  Google Scholar 

  • Ang, B. W., Mu, A. R., & Zhou, P. (2010). Accounting frameworks for tracking energy efficiency trends. Energy Economics, 32, 1209–1219.

    Article  Google Scholar 

  • Bland, J. M., & Altman, D. G. (1996). Statistics notes: measurement error. BMJ, 313(7059), 1654.

    Article  Google Scholar 

  • Blesl, M., Das, A., Fahl, U., & Remme, U. (2007). Role of energy efficiency standards in reducing CO2 emissions in Germany: an assessment with TIMES. Energy Policy, 35(2), 772–785.

    Article  Google Scholar 

  • Blomberg, J., Henriksson, E., & Lundmark, R. (2012). Energy efficiency and policy in Swedish pulp and paper mills: a data envelopment analysis approach. Energy Policy, 42, 569–579.

    Article  Google Scholar 

  • Bose, R. (2004). Improving capacity in LMDS networks using trellis-coded modulation. EURASIP Journal on Wireless Communications and Networking, 2004(2), 365–373.

  • BP, 2014. http://www.bp.com/zh_cn/china/reports-and-publications.html

  • Burg, J. P. (1967). Maximum entropy spectral analysis. Proc. 37th. Meet. Soc. Exploration geophysicists; reprinted in modern spectrum analysis. New York: IEEE Press.

    Google Scholar 

  • Cai, Q. Y., & Li, B. W. (2004). Improving the capacity of the Boström-Felbinger protocol. Physical Review A, 69(5), 054301.

    Article  Google Scholar 

  • Clinch, J. P., Healy, J. D., & King, C. (2001). Modelling improvements in domestic energy efficiency. Environmental Modelling & Software, 16(1), 87–106.

    Article  Google Scholar 

  • Cui, Q., & Li, Y. (2014). The evaluation of transportation energy efficiency: an application of three-stage virtual frontier DEA. Transportation Research Part D, 29, 1–11.

    Article  Google Scholar 

  • Cui, Q., & Li,Y. (2015). An empirical study on the influencing factors of transportation carbon efficiency: evidences from fifteen countries. Applied Energy, 141, 209–217.

  • Cui, Q., Kuang, H. B., Wu, C. Y., & Li, Y. (2014). The changing trend and influencing factors of energy efficiency: the case of nine countries. Energy, 64, 1026–1034.

    Article  Google Scholar 

  • Deng, J. L. (1982). Control problems of grey systems. System & Control Letters, 1(5), 188–294.

    Google Scholar 

  • Elkarni, F., & Mustafa, I. (1993). Increasing the utilization of solar energy technologies (SET) in Jordan: analytic hierarchy process. Energy Policy, 21, 978–984.

    Article  Google Scholar 

  • Gillingham, K., & Palmer, K. (2014). Bridging the energy efficiency gap: policy insights from economic theory and empirical evidence. Review of Environmental Economics and Policy, 0(0), 1–21.

    Google Scholar 

  • Herring, H. (2006). Energy efficiency–a critical view. Energy, 31, 10–20.

    Article  Google Scholar 

  • Hu, J. L., & Wang, S. C. (2006). Total-factor energy efficiency of regions in China. Energy Policy, 34, 3206–3217.

    Article  Google Scholar 

  • Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: methods and applications. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Ince, E. L. (2012). Ordinary differential equations. USA: Courier Dover Publications.

    Google Scholar 

  • Jaffe, A. B., & Stavins, R. N. (1994). The energy-efficiency gap What does it mean? Energy Policy, 22(10), 804–810.

    Article  Google Scholar 

  • Khademvatani, A., & Gordon, D. V. (2013). A marginal measure of energy efficiency: the shadow value. Energy Economics, 38, 153–159.

    Article  Google Scholar 

  • Khan, J. F., & Bhuiyan, S. M. (2014). Weighted entropy for segmentation evaluation. Optics & Laser Technology, 57, 236–242.

    Article  Google Scholar 

  • Kim, K., & Kim, Y. (2012). International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition. Energy Economics, 34, 1724–1741.

    Article  Google Scholar 

  • Leng, Y., Kou, C., Zhou, N., Li, Q., Liang, Y., et al. (2012). Evaluation on transfer efficiency at integrated transport terminals through multilevel grey evaluation. Procedia - Social and Behavioral Sciences, 43, 587–594.

    Article  Google Scholar 

  • Lin, B., & Du, K. (2013). Technology gap and China’s regional energy efficiency: a parametric metafrontier approach. Energy Economics, 40, 529–536.

    Article  Google Scholar 

  • Meyer, P. S., & Ausubel, J. H. (1999). Carrying capacity: a model with logistically varying limits. Technological Forecasting and Social Change, 61(3), 209–214.

    Article  Google Scholar 

  • Monks, J., Ebert, J. P., Hwu, W. M. W., & Wolisz, A. (2003). Energy saving and capacity improvement potential of power control in multi-hop wireless networks. Computer Networks, 41(3), 313–330.

    Article  MATH  Google Scholar 

  • Mukherjee, K. (2008). Energy use efficiency in the Indian manufacturing sector: an interstate analysis. Energy Policy, 36, 662–672.

    Article  Google Scholar 

  • Newell, R. G., Jaffe, A. B., & Stavins, R. N. (1999). The induced innovation hypothesis and energy-saving technological change. Quarterly Journal of Economics, 114(458), 907–940.

    Google Scholar 

  • O’Reilly, A. M. (1986). Tourism carrying capacity: concept and issues. Tourism Management, 7(4), 254–258.

    Article  Google Scholar 

  • Patterson, M. G. (1996). What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy, 24(5), 377–390.

    Article  Google Scholar 

  • Pearce, D. G. (1989). Tourist development. Harlow: Longman.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26.

    Article  MATH  Google Scholar 

  • Seidl, I., & Tisdell, C. A. (1999). Carrying capacity reconsidered: from Malthus’ population theory to cultural carrying capacity. Ecological Economics, 31(3), 395–408.

    Article  Google Scholar 

  • Shim, J. P. (1989). Bibliographical research on theanalytic hierarchy process (AHP). Socio-Economic Planning Sciences, 23, 161–167.

    Article  Google Scholar 

  • Turner, K. (2009). Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK economy. Energy Economics, 31, 648–666.

    Article  Google Scholar 

  • Von Bertalanffy, L. (1968). General system theory: foundations, development, applications. New York: George Braziller.

    Google Scholar 

  • Wang, Z., & Lu, M. (2014). An empirical study of direct rebound effect for road freight transport in China[J]. Applied Energy, 133, 274–281.

    Article  Google Scholar 

  • Wang, Z., Yin, F., Zhang, Y., & Zhang, X. (2012a). An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing City, China. Applied Energy, 100, 277–284.

    Article  Google Scholar 

  • Wang, Z. H., Zeng, H. L., Wei, Y. M., & Zhang, Y. X. (2012b). Regional total factor energy efficiency: an empirical analysis of industrial sector in China. Applied Energy, 97, 115–123.

    Article  Google Scholar 

  • Wang, Z., Feng, C., & Zhang, B. (2014a). An empirical analysis of China’s energy efficiency from both static and dynamic perspectives. Energy, 2014(74), 322–330.

    Article  Google Scholar 

  • Wang, Z., Lu, M., & Wang, J. C. (2014b). Direct rebound effect on urban residential electricity use: an empirical study in China. Renewable and Sustainable Energy Reviews, 30, 124–132.

    Article  Google Scholar 

  • World Bank, 2014. http://data.worldbank.org.cn/indicator/IS.SHP.GOOD.TU.

  • Worrell, E., Martin, N., & Price, L. (2000). Potentials for energy efficiency improvement in the US cement industry. Energy, 25(12), 1189–1214.

    Article  Google Scholar 

  • Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2, 109–123.

    Article  Google Scholar 

  • Wu, Q., & Wu, C. Y. (2009). Research on evaluation model of energy efficiency based on DEA. Journal of Management Sciences, 22(1), 103–112 (in Chinese).

    Google Scholar 

  • Xie, Y., & Mao, Z. (2012). Evaluation of residential energy-saving buildings based on grey relational analysis method. Procedia Engineering, 29, 3149–3153.

    Article  Google Scholar 

  • Xu, S. (1988). Principle of analytic hierarchy process. Tianjin: Tianjin University Press (in Chinese).

    Google Scholar 

  • Zhou, P., Ang, B. W., & Poh, K. L. (2008). A survey of data envelopment analysis in energy and environmental studies. European Journal of Operational Research, 189(1), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is funded by the National Nature Science Foundation of China (NO.71403034; NO.71273037; NO.71320107006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Cui.

Appendix

Appendix

Table 8 The data example (the data of five countries in 2010)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Li, Y. An empirical study on energy efficiency improving capacity: the case of fifteen countries. Energy Efficiency 8, 1049–1062 (2015). https://doi.org/10.1007/s12053-015-9337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-015-9337-3

Keywords

Navigation