Abstract
The overall energy demand of data centers (DCs) is still rising dramatically. Since a DC’s cooling system (CS) is a large energy consumer, reducing its demand is a key element for improving the DC’s overall energy efficiency. Integrating an aquifer thermal energy storage (ATES) in DC’s CS can help cutting the DC’s energy demand drastically. However, ambiquity about the benefits and requirements for the operation of an ATES with a DC’s CS exists, relating to technical as well as legal aspects. Therefore, this article investigates the technical prerequisites a DC has to fulfill to integrate an ATES into its CS. In addition, a case study with a mid-size DC for three different common German DC locations is conducted to determine the energetic and economic savings of the ATES operation compared to a standard CS design. Using site specific data (e.g., weather and hydrogeological data), we showed that the ATES operation can reduce the CS’s energy demand drastically, depending mainly on the underground structure. It was further shown that ATES operation can be profitable in some cases for DC operators when energy efficiency programs of the German government are used.
Similar content being viewed by others
Notes
The building of the German parliament
The underground structures of four locations were analyzed resulting in three suitable locations for ATES operation.
These measures include hardware design improvements as well as hardware operation issues. One prominent idea is to rise energy-aware resource alocation algorithms as for instance described by Beloglazov et al. (2012).
Another option is liquid cooling which is described for example by ASHRAE (2006). Since liquid cooling is not common in german DCs, this technology is not considered.
The solution is called brine; it contains water and, e.g., glycol. Sometimes, the CS does not have an additional water-based cooling loop between the CRAC units and the chiller or economizer; there are also CRAC units directly equipped with VCCs, but these units are normally not used in larger DCs for efficiency reasons.
Experts assume that virtualization and improving workload distribution technologies will lead to both a time-dependent and more flexible workload. Nevertheless, nowadays, these time-dependency and flexibility is not state-of-the-art. Hence, this article assumes a constant workload.
A small difference is usually accepted.
Using market available VCC
Kreditanstalt für Wiederaufbau, a government-owned development bank.
Since the drilling costs account for largest portion of the overall investment costs, they were validated using proposals for Berlin valueing 190 EUR/m.
11 The heat transfer capacity of the reference PHE is 230 kW.
The pressure drop of the piping system is calculated; the pressure drop of the heat exchanger is 5000 Pa.
Even though Hamburg does not qualify, the KfW loan conditions are applied. If the ATES operation in Hamburg is profitable when the KfW loan conditions are applied, one has to check other options, but if not, operating an ATES will likely also not be profitable when other financing options are used because the conditions of these options will presumably be less favorable.
Generated cash flows
A decline in electricity prices historically only occurred in situations of economic breakdown, e.g., after the world financial crisis in 2008 (c.f. Eurostat (2013)).
References
Andersson, O., Hellström, G., Nordell, B (2003). Heating and cooling with UTES in Sweden-current situation and potential market development. Proceedings of the Futurestock Conference. http://pure.ltu.se/portal/files/350717/artikel.pdf. Accessed 11 March 2014.
ASHRAE (2006). Liquid Cooling Guidelines for Datacom Equipment Centers. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
ASHRAE (2012). Thermal Guidelines for Data Processing Environments. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
Barroso, L. A., & Hölzle, U. (2009). The data center as a computer: an introduction to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture. doi: 10.2200/S00193ED1V01Y200905CAC006.
Beloglazov, A., Abawajy, J., Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 28(5), 755–768.
Bracke, R., & Klümpen, C. (2005). Brunenbau (Leistungsbuch Altlasten und Flächenentwicklung 2004/2005). Environtmental Protection Agency of North Rhine-Westphalia. http://www.lanuv.nrw.de/veroeffentlichungen/malbo/malbo20/malbo20s243s256.pdf. Accessed 11 March 2014.
Bridger, D. W., & Allen, D. M. (2005). Designing aquifer thermal energy storage systems. ASHRAE Journal, 47(9), 32–37.
Chemie Technik (2013). Schulze-kölbel-price index for process industry components. Chemie Technik. http://www.chemietechnik.de/texte/anzeigen/120010/Anlagenbau/Planung/CT-exklusiv-Baupreisindex-fuer-Chemieanlagen/Preisindex-Chemieanlagen-Baupreisindex-Koelbel-Schulze+Huethig-GmbH. Accessed 23 May 2013.
Dai, J., Ohadi, M.M., Das, D., Pecht, M.G. (2014). Optimum Cooling of Data Centers. New York: Springer.
Destatis (2013). Producer Price Indices of Industrial Products. Federal Statistical Office of Germany. https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Erzeugerpreise/ErzeugerpreiseLangeReihenPDF_5612401.pdf?_blob=publicationFile. Accessed 11 March 2014.
Dincer, I., & Rosen, M.A. (2010). Thermal Energy Storage - Systems and Applications. Hoboken: Wiley.
Dittmar, L., & Schaefer, M. (2009). Electricity demand modeling of German data centers: dealing with uncertainties. IZE Schriftenreihe, (1), 1–21.
El-Sayed, N., Stefanovici, I.A., Amvrosiadis, G., Hwang, A.A., Schroeder, B. (2012). Temperature management in data centers: why some (might) like it hot. Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems. doi: 10.1145/2254756.2254778.
EPA (2007). Report to congress on server and data center energy efficiency. Environmental Protection Agency. http://www.energystar.gov/ia/partners/proddevelopment/downloads/EPA_Datacenter_Report_Congress_Final1.pdf.. Accessed 11 March 2014.
Eurostat (2013). Electricity prices for industrial customers (time series; new and old method). Statistical Office of the European Union. http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/main_tables. Accessed 11 March 2014.
Gebhardt, M., Kohl, H., Steinrötter, T. (2002). IUTA-Preisatlas. Institut für Energie- und Umwelttechik e. V. (IUTA). http://www.stenum.at/media/documents/preisatlas_komplett.PDF. Accessed 11 March 2014.
Ghatikar, G., Piette, M., Fujita, A.S., McKane, A.T., Han, J.Q., Radspieler, A., Mares, K.C., Shroyer, D. (2010). Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy Commission, PIER Program and Pacific Gas and Electric Company (PG&E).
Grombach, P., Haberer, K., Merkl, G., Trueb, E. (1999). Handbuch der Wasserversorgungstechnik. Munich: Deutscher Industrieverlag (DIV).
GWE (2013). Price list for GWE-pumps (valid from Feb. 2013 - German market). GWE Group. http://www.gwe-gruppe.de/export/sites/www.gwe-gruppe.de/pdf/Preislisten/Pumpen_Preisliste.pdf. Accessed 11 March 2014.
Hintemann, R., Fichter, K., Stobbe, L (2010). Materialbestand der Rechenzentren in Deutschland - eine Bestandsaufnahme zur Ermittlung von Ressourcen- und Energieeinsatz. German Environmental Protection Agency (Umweltbundesamt). https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4037.pdf. Accessed 11 March 2014.
Howard, A., & Holmes, J. (2012). Addressing data center efficiency: lessons learned from process evaluations of utility energy efficiency programs. Energy Efficiency, 5 (1), 137–148.
Howard-Healy, M. (2012). Rechenzentren in Deutschland - Markt und Nachfragemotoren. Broadgroup Consulting. http://www.funkschau.de/datacenter/artikel/87097/. Accessed 11 March 2014.
IEA. (1992). Annex 7 - Innovative and Cost-Effective Seasonal Cold Storage Applications. Ottawa: International Energy Agency (IEA).
Janacek, S., Schröder, K., Schomaker, G., Nebel, W., Ruschen, M., Pistoor, G. (2012). Modeling and approaching a cost transparent, specific data center power consumption. Proceedings of the International Conference on Energy Aware Computing. doi: 10.1109/ICEAC.2012.6471012.
Joshi, Y., & Kumar, P. (2012). Introduction to data center energy flow and thermal management In Joshi, Y., & Kumar, P. (Eds.), Energy Efficient Thermal Management of Data Centers, (pp. 1–38). New York: Springer.
Kenkmann, T., & Bürger, V (2012). Contribution of renewable cooling to the renewable energy target of the EU. Öko-Institut e.V. http://www.oeko.de/oekodoc/1497/2012-066-en.pdf. Accessed 11 March 2014.
KfW (2013a). Energy efficiency and corporate environmental protection program. Kreditanstalt für Wiederaufbau. https://www.kfw.de/inlandsfoerderung/EN/Domestic-Promotion/Our-offers/Energy-efficiency-and-corporate-environmental-protection/index-2.html. Accessed 11 March 2014.
KfW (2013b). Energy efficiency and corporate environmental protection program—conditions bulletin. Kreditanstalt für Wiederaufbau. https://www.kfw.de/Download-Center/F%C3%B6rderprogramme-%28Inlandsf%C3%B6rderung%29/PDF-Dokumente/6000002221M242243244.pdf. Accessed 11 March 2014.
Kranz, S., & Bartels, J. (2010). Simulation and data based optimisation of an operating seasonal aquifer thermal energy storage. Proceedings of the World Geothermal Congress, Bali: Indonesia.
Kranz, S., & Frick, S. (2013). Efficient cooling energy supply with aquifer thermal energy storages. Applied Energy, 109 (0), 321–327.
Kumar, P., & Joshi, Y. (2012). Fundamentals of data center airflow management In Joshi, Y., & Kumar, P. (Eds.), Energy Efficient Thermal Management of Data Centers, (pp. 39–136). New York: Springer.
Lanser, W., Paitazoglou, C., Hunt, S., Ziegler, F. (2012). Fernwärmeangetriebene Absorptionskälteanlagen zur Klimatisierung von Rechenzentren. Technical University Berlin. http://www.cio.bund.de/SharedDocs/Publikationen/DE/Innovative-Vorhaben/greenit_studie.pdf. Accessed 11 March 2014.
Lee, K.S. (2010). A review on concepts, applications, and models of aquifer thermal energy storage systems. Energies, 3 (6), 1320–1334.
MATLAB (2013). MATLAB (matrix laboratory). Natick, MA: The MathWorks Inc.
Menuet, R., & Turner, W.P. (2006). Continuous cooling is required for continuous availability. The Uptime Institute. http://www.climatesolutions.se/sites/default/files/telecool/continuous_cooling_whitepaper_uptime.pdf. Accessed 11 March 2014.
Mirza, C. (1993). Case history of aquifer thermal energy storage (ATES). Third International Conference on Case Histories in Geotechnical Engineering. ftp://ftp.tech-env.com/pub/energy/atesstes/scarboro/atescasehistorymirza.pdf. Accessed 11 March 2014.
Paksoy, H., Snijders, A., Stiles, L (2009). State-of-the-art review of aquifer thermal energy storage systems for heating and cooling buildings. Effstock Conference. http://www.underground-energy.com/Review_of_ATES_Systems_for_Heating_and_Cooling_Buildings.pdf. Accessed 11 March 2014.
Patterson, M.K. (2008). The effect of data center temperature on energy efficiency. Proceedings of the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2008). doi: 10.1109/ITHERM.2008.4544393.
Patyn, J., & Lookman, R. (2012). The combination of aquifer thermal energy storage (ATES) and groundwater remediation. CityChlor Cooperation. http://www.citychlor.eu/sites/default/files/citychlor_ates_with_remediation_20april2012.pdf. Accessed 11 March 2014.
Peters, M.S., Timmerhaus, K.D., West, R.E. (2004). Plant Design and Economics for Chemical Engineers. New York: McGraw Hill.
Klein, S.A. (2004). Trnsys 16—a transient system simulation program (user manual). Madison: Solar Energy Laboratory.
Sanner, B., Kabus, F., Seibt, P., Bartels, J. (2005). Underground thermal energy storage for the German parliament in Berlin—system concept and operational experiences. World Geothermal Congress. http://sanner-geo.de/media/1438.pdf. Accessed 11 March 2014.
Schäppi, B., Przywara, B., Bellosa, F., Bogner, T., Weeren, S., Harrison, R., Anglade, A. (2007). Energy efficient servers in Europe: energy consumption, saving potentials, market barriers and measures. Vienna: The Efficient Servers Consortium.
Schmidt, T. (2004). TRNATES—aquifer thermal energy storage simulation using TRNSYS. Stuttgart: Solar- und Wärmetechnik.
Schödwell, B., Wilkens, M., Erek, K., Zarnekow, R. (2012). Towards a holistic multi-level green performance indicator framework (GPIF) to improve the energy effi- ciency of data center operation– a resource usage-based approach. Proceedings of the Electronics Goes Green Conference.
Schödwell, B., Drenkelfort, G., Pröhl, T., Erek, K., Zarnekow, R. (2013). Smart Data Centers: Chancen für Rechenzentren auf dem Weg zu einer intelligenten Energieversorgung. Handbuch der Wirtschaftsinformatik, 291, 40–51.
VDI (2010). VDI-Guideline 4640 (Series 1): Thermal use of the underground—fundamentals, approvals, environmental aspects. Düsseldorf: Verein Deutscher Ingenieure(VDI).
VDI (2012). VDI-Guideline 2067 (Series 1): economic efficiency of building installations—fundamentals and economic calculation. Düsseldorf: Verein Deutscher Ingenieure(VDI).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Drenkelfort, G., Kieseler, S., Pasemann, A. et al. Aquifer thermal energy storages as a cooling option for German data centers. Energy Efficiency 8, 385–402 (2015). https://doi.org/10.1007/s12053-014-9295-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12053-014-9295-1