Skip to main content

Advertisement

Log in

A framework for home energy management and its experimental validation

  • ORIGINAL ARTICLE
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

With the Smart Grid revolution and the increasing interest in renewable energy sources, the management of the electricity consumption and production of individual households and small residential communities is becoming an essential element of new power systems. The electric energy chain can greatly benefit from a flexible interaction with end-users based on the optimization of load profiles and the exploitation of local generation and energy storage. This paper proposes a framework for the development of a complete energy management system for individual residential units and small communities of domestic users, taking into account both the power system and the final users’ perspectives. All the main elements of the framework are considered, and contributions are provided on the users’ habits profiling, electricity generation forecast, energy load, and storage optimization. Specifically, we propose a linear regression model to predict the photovoltaic panels production, a stochastic method to forecast the home appliances usage, and two optimization models to optimize the electricity management of residential users with the goal of minimizing their bills. The study shows that it is possible to reduce the energy bill of residential users through the electricity optimization driven by dynamic energy prices. Moreover, remarkable improvements of the electric grid efficiency can be achieved with the cooperation among users, confirming that services for the coordination of the demand of groups of users allow huge benefits on the power system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acquirente Unico (2013). Official web site. http://www.acquirenteunico.it/.

  • Address Project (2013). Official web site. http://www.addressfp7.org/.

  • Adika, C. O., & Wang, L. (2013). Autonomous appliance scheduling for household energy management. IEEE Transactions on Smart Grid, 5 (2), 673–682.

    Article  Google Scholar 

  • Agnetis, A., Dellino, G., Detti, P., Innocenti, G., de Pascale, G., Vicino, A. (2011). Appliance operation scheduling for electricity comsumption optimization. In IEEE conference on decision and control and european control conference, CDC-ECC (pp. 5899–5904). Orlando, Florida.

  • AIM European Project (2013). Official web site. http://www.ict-aim.eu/.

  • Allerding. F., Premm, M., Shukla, P.K., Schmeck, H. (2012). Electrical load management in smart homes using evolutionary algorithms. In Evolutionary computation in combinatorial optimization (pp. 99–110). Springer.

  • Álvarez Bel, C., Escrivá-Escrivá, G., Alcázar-Ortega, M. (2013). Renewable generation and demand response integration in micro-grids: Development of a new energy management and control system. Energy Efficiency, 6 (4), 695–706.

    Article  Google Scholar 

  • Barbato, A., Borsani, L., Capone, A., Melzi, S. (2009). Home energy saving through a user profiling system based on wireless sensors. In Proceedings of the first ACM workshop on embedded sensing systems for energy-efficiency in buildings (pp 49–54). ACM.

  • Barbato, A., Capone, A., Chen, L., Martignon, F., Paris, S. (2013). A power scheduling game for reducing the peak demand of residential users. In Online Conference on Green Communications (GreenCom) (pp 137–142). IEEE.

  • BeAware Project (2013). Official web site. http://www.energyawareness.eu/beaware/.

  • BeAware Project (2013). Official web site. http://www.energyawareness.eu/beaware/.

  • BEE Project (2013). Official web site. http://beeproject.dei.polimi.it/beeoverview.html.

  • Biegel, B., Westenholz, M., Hansen, L. H., Stoustrup, J., Andersen, P., Harbo, S. (2014). Integration of flexible consumers in the ancillary service markets. Energy, 67 (0), 479–489.

    Article  Google Scholar 

  • Bressan, N., Bazzaco, L., Bui, N., Casari, P., Vangelista, L., Zorzi, M. (2010). The deployment of a smart monitoring system using wireless sensors and actuators networks. In IEEE, SmartGridComm’10 (pp. 49–54), Gaithersburg, USA.

  • Bu, S., Yu, F., Liu, P. (2011). In Stochastic unit commitment in smart grid communications. In IEEE, INFOCOM ’11 workshop on green commmunications (pp. 307–312). Shanghai, China.

  • Charles River Associates (2005). Primer on demand-side management, report prepared for the World Bank. Available on: http://siteresources.worldbank.org.

  • Chuang, A., & McGranaghan, M. (2008). Functions of a local controller to coordinate distributed resources in a smart grid. In PES General Meeting IEEE (pp. 1–6). Pittsburgh, USA.

  • Clastres, C., Pham, T. H., Wurtz, F., Bacha, S. (2010). Ancillary services and optimal household energy management with photovoltaic production. Energy, 35 (1), 55–64.

    Article  Google Scholar 

  • Delfanti, M., Falabretti, D., Merlo, M., Monfredini, G., Olivieri, V. (2010). Dispersed generation in MV networks: Performance of anti islanding protections. In 14th International Conference on Harmonics and Quality of Power (ICHQP) (pp. 1–6). Bergamo, Italy.

  • Delfanti, M., Falabretti, D., Merlo, M. (2013). Dispersed generation impact on distribution network losses. Electric Power Systems Research, 97 (0), 10–18.

    Article  Google Scholar 

  • Delfanti, M., Falabretti, D., Merlo, M., Monfredini, G., Pandolfi, L. (2014). Alpstore project: a viable model for renewables exploitation in the alps. Energy Procedia, 46 (0), 3–12.

    Article  Google Scholar 

  • Duy Ha, L., Ploix, S., Zamai, E., Jacomino, M. (2006). Tabu search for the optimization of household energy consumption. In IEEE international conference on information reuse and integration (pp. 86–92). Waikoloa, USA.

  • Duy Ha, L., de Lamotte, F., Quoc Hung, H. (2007). Real-time dynamic multilevel optimization for demand-side load management. In IEEE international conference on industrial engineering and engineering management (pp. 945–949), Singapore.

  • ECORET Project (2013). Official web site (ITA). http://www.rse-web.it/progetti.page?RSE_originalURI=/progetti/progetto/documento/178/312827&objId=178&typeDesc=Rapporto&RSE_manipulatePath=yes&docIdType=1&country=ita.

  • Energy@Home (2013). Official web site. http://www.energy-home.it/SitePages/Home.aspx.

  • Eurelectric (2011). Eurelectric views on demand-side participation. Available on: http://www.eurelectric.com.

  • European Commission et al. (2006). European SmartGrids technology platform: Vision and atrategy for Europe’s electricity networks of the future.

  • European Energy Regulators (2012). Official web site. http://www.energy-regulators.eu/portal/page/portal/EER_HOME.

  • European Environment Agency (2014). Official web site. http://www.eea.europa.eu/.

  • European Parliament, Council (2009). Directive 2009/72/EC of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC.

  • European Regulators’ Group for Electricity and Gas, ERGEG (2009). Position paper on Smart Grids, an ERGEG public consultation paper.

  • European Regulators’ Group for Electricity and Gas, ERGEG (2011). CEER Advice on the take-off of a demand response electricity market with smart meters. Available on: http://www.energy-regulators.eu, Ref: C11-RMF-36-03.

  • Faruqui, A., Sergici, S., Akaba, L. (2013). Dynamic pricing of electricity for residential customers: the evidence from Michigan. Energy Efficiency, 6 (3), 571–584.

    Article  Google Scholar 

  • Fensel, A., Tomic, S., Kumar, V., Stefanovic, M., Aleshin, S. V., Novikov, D. O. (2013). Sesame-s: Semantic smart home system for energy efficiency. Informatik-Spektrum, 36 (1), 46–57.

    Article  Google Scholar 

  • Fernandez-Jimenez, L., Muñoz-Jimenez, A., Falces, A., Mendoza-Villena, M., Garcia-Garrido, E., Lara-Santillan, P., Zorzano-Alba, E., Zorzano-Santamaria, P. (2012). Short-term power forecasting system for photovoltaic plants. Renewable Energy, 44 (1), 311–317.

    Article  Google Scholar 

  • Gallicchio, C., & Micheli, A. (2011). Barsocchi P., Chessa S., Reservoir computing forecasting of user movements from RSS mote-class sensors measurements. Technical Report.

    Google Scholar 

  • Geelen, D., Reinders, A., Keyson, D. (2013). Empowering the end-user in smart grids: Recommendations for the design of products and services. Energy Policy, 61 (0), 151–161.

    Article  Google Scholar 

  • Guo, Y., Pan, M., Fang, Y. (2012). Optimal power management of residential customers in the smart grid. IEEE Transactions on Parallel and Distributed Systems, 23 (9), 1593–1606.

    Article  Google Scholar 

  • Ha, D., Ploix, S., Zamai, E., Jacomino, M. (2006). A home automation system to improve household energy control. In The 12th IFAC symposium on information control problems in manufacturing (pp. 1–7). Saint Etienne, France.

  • Hagan, M.T., Demuth, H.B., Beale, M.H., et al. (1996). Neural network design. Boston: Pws Pub.

  • Hagras, H., & et al. (2004). Creating an ambient-intelligence environment using embedded agents. IEEE Intelligent Systems, 19 (6), 12–20.

    Article  Google Scholar 

  • Hatami, S., & Pedram, M. (2010). Minimizing the electricity bill of cooperative users under a quasi-dynamic pricing model. In SmartGridComm ’10, IEEE (pp. 421–426). Gaithersburg, USA.

  • Huld, T., Gottschalg, R., Beyer, H., Topič, M. (2010). Mapping the performance of PV modules, effects of module type and data averaging. Solar Energy, 84 (2), 324–338.

    Article  Google Scholar 

  • Hunt, K., Sbarbaro, D., żbikowski, R., Gawthrop, P. (1992). Neural networks for control systems: a survey. Automatica (Journal of IFAC), 28 (6), 1083–1112.

    Article  MATH  Google Scholar 

  • IEA Demand Side Management Programme (2013). Official web site. http://www.ieadsm.org/.

  • IEEE Smart Grid (2013). Official web site. http://smartgrid.ieee.org/.

  • Italian Regulatory Authority for Electricity and Gas (2010a). Definition of an instrument for the gradual application of prices differentiated by hour bands to domestic customers in protected categories, Resolution ARG/elt 22/10. Available on: http://www.autorita.energia.it.

  • Italian Regulatory Authority for Electricity and Gas (2010b). Procedures and criteria for the selection of investments admissible for incentives pursuant to paragraph 11.4, letter d) of Annex A to Authority for Electricity and Gas Resolution No. 348/07 of 29th December 2007. Available on: http://www.autorita.energia.it.

  • Jacomino, M., & Le, M. (2012). Robust energy planning in buildings with energy and comfort costs. 4OR - A Quaterly Journal of Operations Research, 10 (1), 81–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D. (2009). Design and implementation of a high-fidelity AC metering network. In International conference on information processing in sensor networks (pp. 253–264). San Francisco, USA .

  • Lappegard Hauge, Å., Thomsen, J., Löfström, E. (2013). How to get residents/owners in housing cooperatives to agree on sustainable renovation. Energy Efficiency, 6 (2), 315–328.

    Article  Google Scholar 

  • Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy logic controller. IEEE Transactions on Systems, Man and Cybernetics, 20 (2), 419–435.

    Article  MATH  Google Scholar 

  • Livengood, D., & Larson, R. (2009). The energy box: Locally automated optimal control of residential electricity usage. Service Science, 1 (1), 1–16.

    Article  Google Scholar 

  • Lorenz, E., Remund, J., Muller̈, S., Traunmuller̈, W., Steinmaurer, G., Pozo, D., Ruiz-Arias, J., Fanego, V., Ramirez, L., Romeo, M., Kurz, C., Pomares, L., Guerrero, C. (2007). Benchmarking of different approaches to forecast solar irradiance, Subtask C-3: Solar resource forecasting, solar heating and cooling programme.

  • Lorenz, E., Hurka, J., Heinemann, D., Beyer, H. (2009). Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE Journal Selected Topics Applied Earth Observations Remote Sensing, 2 (1), 2–10.

    Article  Google Scholar 

  • Lujano-Rojas, J. M., Monteiro, C., Dufo-López, R. (2012). Optimum residential load management strategy for real time pricing (rtp) demand response programs. Energy Policy, 45, 671–679.

    Article  Google Scholar 

  • Lund, H., Marszal, A., Heiselberg, P. (2011). Zero energy buildings and mismatch compensation factors. Energy and Buildings, 43 (7), 1646–1654.

    Article  Google Scholar 

  • Micene Project (2013). Official web site. http://www.eerg.it/index.php?p=Progetti_-_MICENE.

  • Mohsenian-Rad, A. H., & Leon-Garcia, A. (2010). Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Transactions on Smart Grid, 1 (2), 120–133.

    Article  Google Scholar 

  • Mohsenian-Rad, A. H., Wong, V. W., Jatskevich, J., Schober, R., Leon-Garcia, A. (2010). Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Transactions on Smart Grid, 1 (3), 320–331.

    Article  Google Scholar 

  • Molderink, A., Bakker, V., Bosman, M. G., Hurink, J. L., Smit, G. J. (2009). Domestic energy management methodology for optimizing efficiency in smart grids. In PowerTech, IEEE Bucharest (pp. 1–7), IEEE.

  • Mozer, M. (1998). The neural network house: An environment that adapts to its inhabitants. In AAAI Spring Symp. on intelligent environments (pp. 1–6). Palo Alto, USA.

  • Neto, A., & Fiorelli, F. (2008). Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy and Buildings, 40 (12), 2169–2176.

    Article  Google Scholar 

  • Newsham, G, & Birt, B. (2010). Building-level occupancy data to improve arima-based electricity use forecasts. In Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building (pp. 13–18). Zurich: ACM BuildSys.

  • Pedrasa, M. A. A., Spooner, T. D., MacGill, I. F. (2010). Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Transactions on Smart Grid, 1 (2), 134–143.

    Article  Google Scholar 

  • Perfumo, C., Kofman, E., Braslavsky, J. H., Ward, J. K. (2012). Load management: Model-based control of aggregate power for populations of thermostatically controlled loads. Energy Conversion and Management, 55, 36–48.

    Article  Google Scholar 

  • Piette, M., Kiliccote, S., Dudley, J. (2013). Field demonstration of automated demand response for both winter and summer events in large buildings in the pacific northwest. Energy Efficiency, 6 (4), 671–684.

    Article  Google Scholar 

  • Plugwise (2013). Official web site. http://www.plugwise.com/en.

  • Rogers, A., Jennings, N., Voice, T., Vytelingum, P., Ramchurn, S. (2011). Decentralised control of micro-storage in the smart grid. In Twenty-Fifth conference on artificial intelligence, AAAI, 2011 (pp. 1–7). San Francisco, California, USA.

  • Rogers, A., Ghosh, S., Wilcock, R., Jennings, N. (2013). A scalable low-cost solution to provide personalised home heating advice to households. In BuildSys’13 (pp. 1–8). Rome, Italy.

  • Rowe, A., Berges, M., Rajkumar, R. (2010). Contactless sensing of appliance state transitions through variations in electromagnetic fields. In Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building (pp. 19–24). Zurich: ACM BuildSys.

  • Saad, W., Han, Z., Poor, H. V., Basar, T. (2012). Game-theoretic methods for the smart grid: an overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine, 29 (5), 86–105.

    Article  Google Scholar 

  • Seber, G., & Wild, C. (2003). Nonlinear regression. Hoboken: Wiley-Interscience.

    Google Scholar 

  • Soares, A., Gomes, Á., Antunes, C.H., Cardoso, H. (2013). Domestic load scheduling using genetic algorithms. In Applications of evolutionary computation (pp. 142–151). Springer.

  • Sulaiman, S., Musirin, I., Rahman, T. (2008). Prediction of total ac power output from a grid-photovoltaic system using multi-model ann. In AEE 2008 (pp. 118–123). Trondheim, Norway.

  • The Energy@home Technical Team (2011). Energy@home: a “User-Centric” energy management system.

  • Tompros, S., Mouratidis, N., Draaijer, M., Foglar, A., Hrasnica, H. (2009). Enabling applicability of energy saving applications on the appliances of the home environment. IEEE Network, 23 (6), 8–16.

    Article  Google Scholar 

  • US Department of Energy (2012). Demand reductions from the application of advanced metering infrastructure, pricing programs, and customer-based systems — Initial results.

  • Voyant, C., Muselli, M., Paoli, C., Nivet, M. (2011). Optimization of an artificial neural network dedicated to themultivariate forecasting of daily global radiation. Energy, 36 (1), 348–359.

    Article  Google Scholar 

  • Widén, J., Wäckelgård, E., Lund, P. (2009). Options for improving the load matching capability of distributed photovoltaics: methodology and application to high-latitude data, (Vol. 83.

  • Zhao, Z., Lee, W. C., Shin, Y., Song, K. B. (2013). An optimal power scheduling method for demand response in home energy management system. IEEE Transactions on Smart Grid, 4 (3), 1391–1400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Delfanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbato, A., Capone, A., Carello, G. et al. A framework for home energy management and its experimental validation. Energy Efficiency 7, 1013–1052 (2014). https://doi.org/10.1007/s12053-014-9269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-014-9269-3

Keywords

Navigation